Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 203(3-4): 407-420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973656

RESUMO

To understand how food resource use and partitioning by closely related species allows local coexistence, it is key to determine whether a species' diet reflects food availability or food preferences. Here, we analysed the diets, seed selection, and seed preferences of three closely related harvester ants: Messor barbarus, M. bouvieri, and M. capitatus. Sympatric within a Mediterranean shrubland, these species differ in foraging behaviour and worker polymorphism. For 2 years, we studied the ants' diets and seed selection patterns as well as the local availability of seeds. Additionally, we performed a seed-choice experiment using a paired comparison design, offering the ants seeds from eight native plant species. The three ant species had the same general diet, which was primarily granivorous. Although they all consumed a wide variety of seeds, they mostly selected seeds from a small subset of plant species. Despite their morphological and behavioural differences, the ants displayed similar seed preferences that were highly consistent with their diets and seed selection patterns. Our results support the idea that the trophic ecology of these three harvester ants is driven by similar seed preferences rather than by their morphological and behavioural differences. Seed diversity and abundance were high near the ants' nests, suggesting that seed availability is not limiting and could in fact favour local species coexistence.


Assuntos
Formigas , Animais , Ecologia , Preferências Alimentares , Estado Nutricional , Sementes
2.
Biol Rev Camb Philos Soc ; 97(4): 1287-1305, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35174946

RESUMO

Critical thermal limits (CTLs) constrain the performance of organisms, shaping their abundance, current distributions, and future distributions. Consequently, CTLs may also determine the quality of ecosystem services as well as organismal and ecosystem vulnerability to climate change. As some of the most ubiquitous animals in terrestrial ecosystems, ants are important members of ecological communities. In recent years, an increasing body of research has explored ant physiological thermal limits. However, these CTL data tend to centre on a few species and biogeographical regions. To encourage an expansion of perspectives, we herein review the factors that determine ant CTLs and examine their effects on present and future species distributions and ecosystem processes. Special emphasis is placed on the implications of CTLs for safeguarding ant diversity and ant-mediated ecosystem services in the future. First, we compile, quantify, and categorise studies on ant CTLs based on study taxon, biogeographical region, methodology, and study question. Second, we use this comprehensive database to analyse the abiotic and biotic factors shaping ant CTLs. Our results highlight how CTLs may affect future distribution patterns and ecological performance in ants. Additionally, we identify the greatest remaining gaps in knowledge and create a research roadmap to promote rapid advances in this field of study.


Assuntos
Formigas , Animais , Formigas/fisiologia , Mudança Climática , Ecossistema
3.
Oecologia ; 198(1): 267-277, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767071

RESUMO

Chronic anthropogenic disturbance (CAD) and climate change represent two of the major threats to biodiversity globally, but their combined effects are not well understood. Here we investigate the individual and interactive effects of increasing CAD and decreasing rainfall on the composition and taxonomic (TD), functional (FD) and phylogenetic diversity (PD) of plants possessing extrafloral nectaries (EFNs) in semi-arid Brazilian Caatinga. EFNs attract ants that protect plants against insect herbivore attack and are extremely prevalent in the Caatinga flora. EFN-bearing plants were censused along gradients of disturbance and rainfall in Catimbau National Park in north-eastern Brazil. We recorded a total of 2243 individuals belonging to 21 species. Taxonomic and functional composition varied along the rainfall gradient, but not along the disturbance gradient. There was a significant interaction between increasing disturbance and decreasing rainfall, with CAD leading to decreased TD, FD and PD in the most arid areas, and to increased TD, FD and PD in the wettest areas. We found a strong phylogenetic signal in the EFN traits we analysed, which explains the strong matching between patterns of FD and PD along the environmental gradients. The interactive effects of disturbance and rainfall revealed by our study indicate that the decreased rainfall forecast for Caatinga under climate change will increase the sensitivity of EFN-bearing plants to anthropogenic disturbance. This has important implications for the availability of a key food resource, which would likely have cascading effects on higher trophic levels.


Assuntos
Efeitos Antropogênicos , Formigas , Animais , Brasil , Humanos , Filogenia , Néctar de Plantas
4.
Sci Rep ; 11(1): 3280, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558646

RESUMO

Exploring shifts in the climatic niches of introduced species can provide significant insight into the mechanisms underlying the invasion process and the associated impacts on biodiversity. We aim to test the phylogenetic signal hypothesis in native and introduced species in Europe by examining climatic niche similarity. We examined data from 134 ant species commonly found in western Europe; 130 were native species, and 4 were introduced species. We characterized their distribution patterns using species records from different databases, determined their phylogenetic relatedness, and tested for a phylogenetic signal in their optimal climatic niches. We then compared the introduced species' climatic niches in Europe with their climatic niches in their native ranges and with the climatic niches of their closest relative species in Europe. We found a strong phylogenetic signal in the optimal climatic niches of the most common ant species in Europe; however, this signal was weak for the main climatic variables that affect the distributions of introduced versus native species. Also, introduced species occupied different climatic niches in Europe than in their native ranges; furthermore, their European climatic niches did not resemble those of their closest relative species in Europe. We further discovered that there was not much concordance between the climatic niches of introduced species in their native ranges and climatic conditions in Europe. Our findings suggest that phylogenetics do indeed constrain shifts in the climatic niches of native European ant species. However, introduced species would not face such constraints and seemed to occupy relatively empty climatic niches.

5.
Biol Rev Camb Philos Soc ; 95(5): 1418-1441, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32525288

RESUMO

Social insects, i.e. ants, bees, wasps and termites, are key components of ecological communities, and are important ecosystem services (ESs) providers. Here, we review the literature in order to (i) analyse the particular traits of social insects that make them good suppliers of ESs; (ii) compile and assess management strategies that improve the services provided by social insects; and (iii) detect gaps in our knowledge about the services that social insects provide. Social insects provide at least 10 ESs; however, many of them are poorly understood or valued. Relevant traits of social insects include high biomass and numerical abundance, a diversity of mutualistic associations, the ability to build important biogenic structures, versatile production of chemical defences, the simultaneous delivery of several ESs, the presence of castes and division of labour, efficient communication and cooperation, the capacity to store food, and a long lifespan. All these characteristics enhance social insects as ES providers, highlighting their potential, constancy and efficiency as suppliers of these services. In turn, many of these traits make social insects stress tolerant and easy to manage, so increasing the ESs they provide. We emphasise the need for a conservation approach to the management of the services, as well as the potential use of social insects to help restore habitats degraded by human activities. In addition, we stress the need to evaluate both services and disservices in an integrated way, because some species of social insects are among the most problematic invasive species and native pests. Finally, we propose two areas of research that will lead to a greater and more efficient use of social insects as ES providers, and to a greater appreciation of them by producers and decision-makers.


Assuntos
Formigas , Vespas , Animais , Abelhas , Ecossistema , Insetos , Fenótipo
6.
Sci Total Environ ; 704: 135240, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812426

RESUMO

Anthropogenic disturbance and climate change are major threats to biodiversity persistence and functioning of many tropical ecosystems. Although increases in the intensity of anthropogenic disturbance and climate change are associated with reduced taxonomic, phylogenetic and functional diversities of several organisms, little is known about how such pressures interfere with the distribution of plant reproductive traits in seasonally dry tropical forests. Here we test the hypothesis that individual and combined effects of increasing chronic anthropogenic disturbance and water deficit negatively affect the richness, abundance and diversity of specialized reproductive strategies of native woody plants in the Caatinga dry forest. This study was carried out at the Catimbau National Park, northeastern Brazil (62,294 ha). Chronic anthropogenic disturbance intensity was measured through different sources of disturbance (cattle/goat herbivory, wood extraction, and other people pressures). Water deficit data was obtained from hydrological maps and used as a proxy of aridity. We constructed generalized linear models and selected best-supported models for richness, abundance and functional diversity of reproductive traits. We documented that richness and abundance of plants with certain reproductive traits, regardless the specialization, can increase (in 18 out of the 49 trait categories analyzed; e.g. obligatory cross-pollination in response to increases in aridity and wood extraction), be impaired (in 20 categories; e.g. pollination by Sphingids/beetles with increase in aridity), or remain unchanged (in 21 categories; e.g. pollination by vertebrates with increases in chronic anthropogenic disturbance and aridity) with higher disturbance and aridity. There were combined effects of chronic anthropogenic disturbance and aridity on the richness of plants in nine traits (e.g. pollen flowers; dioecious and self-incompatible plants). Aridity affected 40% of the reproductive traits, while chronic anthropogenic disturbance affected 35.5%. The functional diversity of reproductive traits was affected only by disturbance. Changes in plant community structure promoted by chronic anthropogenic disturbance and aridity will likely threaten plant-animal interactions, thereby compromising the functioning of communities and the persistence of biodiversity in the Caatinga.


Assuntos
Mudança Climática , Florestas , Plantas , Brasil , Ecossistema , Agricultura Florestal , Herbivoria
7.
J Anim Ecol ; 88(6): 870-880, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883729

RESUMO

Anthropogenic disturbance and climate change are the main drivers of biodiversity loss and ecological services around the globe. There is concern that climate change will exacerbate the impacts of disturbance and thereby promote biotic homogenization, but its consequences for ecological services are unknown. We investigated the individual and interactive effects of increasing chronic anthropogenic disturbance (CAD) and aridity on seed dispersal services provided by ants in Caatinga vegetation of north-eastern Brazil. The study was conducted in Catimbau National Park, Pernambuco, Brazil. Within an area of 214 km2 , we established nineteen 50 × 20 m plots that encompassed gradients of both CAD and aridity. We offered diaspores of six plant species, three myrmecochorous diaspores and three fleshy fruits that are secondarily dispersed by ants. We then quantified the number of interactions, seed removal rate and dispersal distances, and noted the identities of interacting ant species. Finally, we used pitfall trap data to quantify the abundances of ant disperser species in each plot. Our results show that overall composition of ant disperser species varied along the gradients of CAD and aridity, but the composition of high-quality dispersers varied only with aridity. The total number of interactions, rates of removal and mean distance of removal all declined with increasing aridity, but they were not related to CAD. These same patterns were found when considering only high-quality disperser species, driven by the responses of the dominant disperser Dinoponera quadriceps. We found little evidence of interactive effects of CAD and aridity on seed dispersal services by ants. Our study indicates that CAD and aridity act independently on ant-mediated seed dispersal services in Caatinga, such that the impacts of anthropogenic disturbance are unlikely to change under the forecast climate of increased aridity. However, our findings highlight the vulnerability of seed dispersal services provided by ants in Caatinga under an increasingly arid climate due to low functional redundancy in high-quality disperser species. Given the large number of plant species dependent on ants for seed dispersal, this has important implications for future plant recruitment and, consequently, for the composition of Caatinga plant communities.


Assuntos
Formigas , Dispersão de Sementes , Animais , Brasil , Mudança Climática , Meio Ambiente , Sementes
8.
Ecology ; 99(9): 1999-2009, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30067862

RESUMO

Leafcutter ants are the ultimate insect superorganisms, with up to millions of physiologically specialized workers cooperating to cut and transport vegetation and then convert it into compost used to cultivate co-evolved fungi, domesticated over millions of years. We tested hypotheses about the nutrient-processing dynamics governing this functional integration, tracing 15 N- and 13 C-enriched substrates through colonies of the leafcutter ant Atta colombica. Our results highlight striking performance efficiencies, including rapid conversion (within 2 d) of harvested nutrients into edible fungal tissue (swollen hyphal tips called gongylidia) in the center of fungus gardens, while also highlighting that much of each colony's foraging effort resulted in substrate placed directly in the trash. We also find nutrient-specific processing dynamics both within and across layers of the fungus garden, and in ant consumers. Larvae exhibited higher overall levels of 15 N and 13 C enrichment than adult workers, supporting that the majority of fungal productivity is allocated to colony growth. Foragers assimilated 13 C-labeled glucose during its ingestion, but required several days to metabolically process ingested 15 N-labeled ammonium nitrate. This processing timeline helps resolve a 40-yr old hypothesis, that foragers (but apparently not gardeners or larvae) bypass their fungal crops to directly assimilate some of the nutrients they ingest outside the nest. Tracing these nutritional pathways with stable isotopes helps visualize how physiological integration within symbiotic networks gives rise to the ecologically dominant herbivory of leafcutter ants in habitats ranging from Argentina to the southern United States.


Assuntos
Formigas , Animais , Argentina , Fungos , Isótopos , Simbiose
9.
J Anim Ecol ; 87(4): 1022-1033, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29504629

RESUMO

Anthropogenic disturbance and climate change might negatively affect the ecosystem services provided by mutualistic networks. However, the effects of such forces remain poorly characterized. They may be especially important in dry forests, which (1) experience chronic anthropogenic disturbances (CADs) as human populations exploit forest resources, and (2) are predicted to face a 22% decline in rainfall under climate change. In this study, we investigated the separate and combined effects of CADs and rainfall levels on the specialization of mutualistic networks in the Caatinga, a seasonally dry tropical forest typical of north-eastern Brazil. More specifically, we examined interactions between plants bearing extrafloral nectaries (EFNs) and ants. We analysed whether differences in network specialization could arise from environmentally mediated variation in the species composition, namely via the replacement of specialist by generalist species. We characterized these ant-plant networks in 15 plots (20 × 20 m) that varied in CAD intensity and mean annual rainfall. We quantified CAD intensity by calculating three indices related to the main sources of disturbance in the Caatinga: livestock grazing (LG), wood extraction (WE) and miscellaneous resource use (MU). We determined the degree of ant-plant network specialization using four metrics: generality, vulnerability, interaction evenness and H2 '. Our results indicate that CADs differentially influenced network specialization: we observed positive, negative, and neutral responses along LG, MU and WE gradients, respectively. The pattern was most pronounced with LG. Rainfall also shaped network specialization, markedly increasing it. While LG and rainfall were associated with changes in network species composition, this trend was not related to the degree of species specialization. This result suggests that shifts in network specialization might be related to changes in species behaviour, not species composition. Our study highlights the vulnerability of such dry forest ant-plant networks to climate change. Moreover, dry forests experience highly heterogeneous anthropogenic disturbances, creating a geographic mosaic of selective forces that may shape the co-evolution of interactions between ants and EFN-bearing plants.


Assuntos
Formigas/fisiologia , Florestas , Atividades Humanas , Fenômenos Fisiológicos Vegetais , Chuva , Simbiose , Criação de Animais Domésticos , Animais , Brasil , Mudança Climática , Agricultura Florestal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA