Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904408

RESUMO

In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.

2.
Materials (Basel) ; 13(10)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438636

RESUMO

Microbial electrochemical technologies have revealed the opportunity of electrochemical enrichment for specific bacterial groups that are able to catalyze reactions of interest. However, there are unsolved challenges towards their application under aggressive environmental conditions, such as in the sea. This study demonstrates the impact of surface electrochemical potential on community composition and its corrosivity. Electrochemical bacterial enrichment was successfully carried out in natural seawater without nutrient amendments. Experiments were carried out for ten days of exposure in a closed-flow system over 316L stainless steel electrodes under three different poised potentials (-150 mV, +100 mV, and +310 mV vs. Ag/AgCl). Weight loss and atomic force microscopy showed a significant difference in corrosion when +310 mV (vs. Ag/AgCl) was applied in comparison to that produced under the other tested potentials (and an unpoised control). Bacterial community analysis conducted using 16S rRNA gene profiles showed that poised potentials are more positive as +310 mV (vs. Ag/AgCl) resulted in strong enrichment for Rhodobacteraceae and Sulfitobacter. Hence, even though significant enrichment of the known electrochemically active bacteria from the Rhodobacteraceae family was accomplished, the resultant bacterial community could accelerate pitting corrosion in 316 L stainless steel, thereby compromising the durability of the electrodes and the microbial electrochemical technologies.

3.
ACS Appl Bio Mater ; 3(8): 4941-4948, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021738

RESUMO

The first electrochemical immunosensor for the determination of the 20S proteasome (P20S) was developed, entailing the immobilization of an antibody on an aminophenylboronic/poly-indole-6-carboxylic acid-modified electrode. The proposed electrochemical bioplatform is a simple and feasible analytical tool applicable for the determination of P20S in human plasma, considering its high clinical and biological relevance. Cyclic voltammetry, electrochemical impedance spectroscopy, and square wave voltammetry (SWV) were used to determine the optimal step-by-step process to obtain the electrochemical immunosensor. The interaction of P20S with the recognition layer of the immobilized antibody on the nanostructured surface took place by incubating the electrode in a P20S solution at 20 °C for 2 h. Using SWV as an electro-analytical technique, this immunosensor can quantify P20S. The current was linear with the P20S concentration within two dynamic concentration ranges from 20.0 to 80.0 and 80.0 to 200.0 ng·mL-1 (r2 = 0.992 and 0.98, respectively) with a limit of detection and quantification of 6 and 18 ng·mL-1, respectively. Moreover, the immunosensor showed considerable repeatability and reproducibility, when the determination was done in human serum, which confirms that it is a promising alternative for direct detection of P20S in biological fluids with minimal interference.

4.
Biosens Bioelectron ; 79: 280-7, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26710345

RESUMO

The detection of naturally occurring desoxyribonucleic acid (DNA) has become a subject of study by the projections that would generate to be able to sense the genetic material for the detection of future diseases. Bearing this in mind, to provide new measuring strategies, in the current work the preparation of a low-cost electrode, modified with poly(1-amino-9,10-anthraquinone) nanowires using a SiO2 template, is carried out; the assembly is next modified by covalently attaching ssDNA strands. It must be noted that all this is accomplished by using solely electrochemical techniques, according to methodology developed for this purpose. SEM images of the modified surface show high order and homogeneity in the distribution of modified nanowires over the electrode surface. In turn, after the hybridization with its complementary strand, the voltammetric responses enable corroborating the linear relationship between hybridization at different DNA concentrations and normalized current response, obtaining a limit of detection (LOD) 5.7·10(-12)gL(-1) and limit of quantification (LOQ) 1.9·10(-11)gL(-1). The working dynamic range is between 1.4·10(-7) and 8.5·10(-9)gL(-1) with a correlation coefficient 0.9998. The successful obtaining of the modified electrode allows concluding that the high order reached by the nanostructures, guides the subsequent single strand of DNA (ssDNA) covalent attachment, which after hybridization with its complementary strand brings about a considerable current increase. This result allows foreseeing a guaranteed breakthrough with regard to the use of the biosensor in real samples.


Assuntos
Técnicas Biossensoriais , DNA/isolamento & purificação , Técnicas Eletroquímicas/métodos , Quinonas/química , Antraquinonas/química , Limite de Detecção , Nanoestruturas/química , Hibridização de Ácido Nucleico/métodos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA