RESUMO
Cryostructured gels, better known as cryogels, are a very important emerging class of biomaterials that have diverse applications in food preservation. This work shows a novel alternative to prepare a cryostructured composite coating made from a blend of xanthan, bovine collagen, and oregano essential oil. The composite coating was suitably applied onto the surface of preservative-free biscuits which were stored for 15 days at 25 ± 2°C and 52% ± 1% relative humidity. The evaluation focused mainly on the changes in the physicochemical, textural, and microbiological characteristics of the biscuits. It was found that the coated samples significantly (p < 0.05) decreased moisture absorption, water activity, and fungal growth. However, the composite coating minimally impacted the quality of biscuits in terms of color, texture profile, and surface microstructure. Overall, the cryostructured composite coating constitutes an advance in technological strategies aimed at the preservation of baked products. This will allow, in the future, the development of novel coatings on bakery products to generate new trends in the conservation of their properties and extension of shelf life. This could be achieved through the implementation of new technologies in the food industry, with the aim of making them more environmentally friendly and contributing to the generation of less plastic waste. PRACTICAL APPLICATION: The study and application of cryogels, as innovative systems in the food industry, allow to expand and diversify the materials that can function as coatings to maintain some quality characteristics, in this case in bakery products, so it is important to analyze their effects and consider them to improve conservation processes.
Assuntos
Óleos Voláteis , Origanum , Animais , Bovinos , Óleos Voláteis/química , Origanum/química , México , Criogéis , Conservação de AlimentosRESUMO
Cryogels are novel materials because the manufacturing process known as cryostructuring allows biopolymers to change their properties as a result of repeated controlled freeze-thaw cycles. Hydrogels of xanthan and karaya gums were evaluated after undergoing up to four controlled freeze-thaw cycles in indirect contact with liquid nitrogen (up to -150 °C) to form cryogels. Changes in structural, molecular, rheological, and thermal properties were evaluated and compared to those of their respective hydrogels. Samples were also analyzed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), Rotational Rheology (RR), Modulated Differential Scanning Calorimetry (MDSC) and zeta potential (ζ). In general, significant differences (p < 0.05) between the numbers of freeze-thaw cycles were found. Karaya cryogels were not stable to repeated cycles of cryostructuring such as the three-cycle xanthan cryogel, which has the best structural order (95.55%), molecular interactions, and thermal stability, which allows the generation of a novel material with improved thermal and structural properties that can be used as an alternative in food preservation.
Assuntos
Criogéis/química , Tecnologia de Alimentos/métodos , Hidrogéis/química , Polissacarídeos Bacterianos/química , Sterculia/química , Biofilmes , Varredura Diferencial de Calorimetria , Congelamento , Temperatura Alta , Microscopia Eletrônica de Varredura , Polímeros/química , Álcool de Polivinil/química , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , XanthomonasRESUMO
The reduction of NaNO2 and safety in meat products have been a concern to the meat industry for the last years. This research evaluated the changes in total fatty acids (TFAs) and myoglobin forms by adding starter culture (Lactobacillus sakei/Staphylococcus carnosus) and 50 ppm of NaNO2 during salami processing. In the postripening stage, the starter culture influenced the concentration of the palmitic, oleic, vaccenic, and γ-linolenic TFAs, whereas the metmyoglobin concentration was lower (which could be related to the antioxidant effect of the starter culture). In this stage, an increase in enthalpy, specific heat, and onset temperature was found when adding starter culture and NaNO2, which is directly related to polyunsaturated TFA. However, when adding just the starter culture without 50 ppm NaNO2, the E. coli population was reduced in 4 log CFU/g. This study proposes the analysis of changes in meat product processing like salami in a holistic form, where the application of starter culture with low nitrite concentrations could be in the meat industry an upward trend for reducing this additive.
RESUMO
Starch is the major component of cereal, pulses, and root crops. Starch consists of two kinds of glucose polymers, amylose and amylopectin. Waxy starch-with 99â»100% amylopectin-has distinctive properties, which define its functionality in many food applications. In this research, a novel material was prepared through the cryogelification of waxy starch (WS) using four cycles of freezing and thawing in indirect contact with liquid nitrogen at -150 °C. Polyvinyl alcohol (PVA) was used as a reference. The cryogels were characterized using several validation methodologies: modulated differential scanning calorimetry (MDSC), scanning electron microscopy (SEM), rheology, and Fourier transform infrared (FTIR) spectroscopy with diffuse reflectance (DR). Based on the number of freezeâ»thaw cycles, significant changes were found (P < 0.05) showing important structural modifications as well as reorganization of the polymeric matrix. Two cryogelification cycles of the WS were enough to obtain the best structural and functional characteristics, similar to those of PVA, which has already been tested as a cryogel. From these results, it is concluded that WS has potential as a cryogel for application in food processing.