Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170382, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307272

RESUMO

Microplastics (MPs) composed of different polymers with various shapes, within a vast granulometric distribution (1 µm - 5 mm) and with a wide variety of physicochemical surface and bulk characteristics spiral around the globe, with different atmospheric, oceanic, cryospheric, and terrestrial residence times, while interacting with other pollutants and biota. The challenges of microplastic pollution are related to the complex relationships between the microplastic generation mechanisms (physical, chemical, and biological), their physicochemical properties, their interactions with other pollutants and microorganisms, the changes in their properties with aging, and their small sizes that facilitate their diffusion and transportation between the air, water, land, and biota, thereby promoting their ubiquity. Early career researchers (ERCs) constitute an essential part of the scientific community committed to overcoming the challenges of microplastic pollution with their new ideas and innovative scientific perspectives for the development of remediation technologies. However, because of the enormous amount of scientific information available, it may be difficult for ERCs to determine the complexity of this environmental issue. This mini-review aims to provide a quick and updated overview of the essential insights of microplastic pollution to ERCs to help them acquire the background needed to develop highly innovative physical, chemical, and biological remediation technologies, as well as valorization proposals and environmental education and awareness campaigns. Moreover, the recommendations for the development of holistic microplastic pollution remediation strategies presented here can help ERCs propose technologies considering the environmental, social, and practical dimensions of microplastic pollution while fulfilling the current government policies to manage this plastic waste.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Ecossistema
2.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805116

RESUMO

Microplastics (MPs) are distributed in a wide range of aquatic and terrestrial ecosystems throughout the planet. They are known to adsorb hazardous substances and can transfer them across the trophic web. To eliminate MPs pollution in an environmentally friendly process, we propose using a photocatalytic process that can easily be implemented in wastewater treatment plants (WWTPs). As photocatalysis involves the formation of reactive species such as holes (h+), electrons (e-), hydroxyl (OH●), and superoxide ion (O2●-) radicals, it is imperative to determine the role of those species in the degradation process to design an effective photocatalytic system. However, for MPs, this information is limited in the literature. Therefore, we present such reactive species' role in the degradation of high-density polyethylene (HDPE) MPs using C,N-TiO2. Tert-butanol, isopropyl alcohol (IPA), Tiron, and Cu(NO3)2 were confirmed as adequate OH●, h+, O2●- and e- scavengers. These results revealed for the first time that the formation of free OH● through the pathways involving the photogenerated e- plays an essential role in the MPs' degradation. Furthermore, the degradation behaviors observed when h+ and O2●- were removed from the reaction system suggest that these species can also perform the initiating step of degradation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA