Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 36(7): 595-645, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10771117

RESUMO

Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent. In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i


Assuntos
Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Mutação/fisiologia , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Distribuição Tecidual
2.
Neurosci Biobehav Rev ; 23(6): 817-43, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10541058

RESUMO

A great body of experimental evidence indicates that the main target for the pharmacological action of local anesthetics (LAs) is the voltage-gated Na+ channel. However, the epidural and spinal anesthesia as well as the behavioral effects of LAs cannot be explained exclusively by its inhibitory effect on the voltage-gated Na+ channel. Thus, the involvement of other ion channel receptors has been suggested. Particularly, two members of the neurotransmitter-gated ion channel receptor superfamily, the nicotinic acetylcholine receptor (AChR) and the 5-hydroxytryptamine receptor (5-HT3R type). In this regard, the aim of this review is to explain and delineate the mechanism by which LAs inhibit both ionotropic receptors from peripheral and central nervous systems. Local anesthetics inhibit the ion channel activity of both muscle- and neuronal-type AChRs in a noncompetitive fashion. Additionally, LAs inhibit the 5-HT3R by competing with the serotonergic agonist binding sites. The noncompetitive inhibitory action of LAs on the AChR is ascribed to two possible blocking mechanisms. An open-channel-blocking mechanism where the drug binds to the open channel and/or an allosteric mechanism where LAs bind to closed channels. The open-channel-blocking mechanism is in accord with the existence of high-affinity LA binding sites located in the ion channel. The allosteric mechanism seems to be physiologically more relevant than the open-channel-blocking mechanism. The inhibitory property of LAs is also elicited by binding to several low-affinity sites positioned at the lipid-AChR interface. However, there is no clearcut evidence indicating whether these sites are located at either the annular or the nonannular lipid domain. Both tertiary (protonated) and quaternary LAs gain the interior of the channel through the hydrophilic pathway formed by the extracellular ion channel's mouth with the concomitant ion flux blockade. Nevertheless, an alternative mode of action is proposed for both deprotonated tertiary and permanently-uncharged LAs: they may pass from the lipid membrane core to the lumen of the ion channel through a hydrophobic pathway. Perhaps this hydrophobic pathway is structurally related to the nonannular lipid domain. Regarding the LA binding site location on the 5-HT3R, at least two amino acids have been involved. Glutamic acid at position 106 which is located in a residue sequence homologous to loop A from the principal component of the binding site for cholinergic agonists and competitive antagonists, and Trp67 which is positioned in a stretch of amino acids homologous to loop F from the complementary component of the cholinergic ligand binding site.


Assuntos
Anestésicos Locais/farmacologia , Receptores Colinérgicos/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Animais , Antagonistas Colinérgicos/farmacologia , Humanos , Canais Iônicos/química , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia
3.
Arch Biochem Biophys ; 371(1): 89-97, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-10525293

RESUMO

Fatty acids as well as phencyclidine (PCP) inhibit the ion channel activity of the nicotinic acetylcholine receptor (AChR) by a noncompetitive mechanism. However, the exact localization of the fatty acid binding sites is unknown and, thus, the noncompetitive inhibitory mechanism for these endogenous modulators remains to be elucidated. In an attempt to determine the location of the fatty acid binding sites, we study the mutually exclusive action between 5-doxylstearate (5-SASL), a derivative of the endogenous noncompetitive antagonist (NCA) stearic acid, and other exogenous NCAs. For this purpose, both equilibrium and competitive binding assays using fluorescent and radiolabeled ligands were performed on desensitized AChRs. More specifically, we determined: (i) the effect of 5-SASL on the binding of the exogenous NCA [(3)H]PCP; (ii) the effect of 5-SASL on the binding of either quinacrine or ethidium, two fluorescent NCAs from exogenous origin; and (iii) the PCP-induced displacement of quinacrine and ethidium from their respective high-affinity binding sites. Our first target (i) is carried out by measuring the [(3)H]PCP binding in the absence or in the presence of increasing concentrations of 5-SASL. We found that 5-SASL displaces PCP from its low-affinity binding sites. The low-affinity PCP binding sites were pharmacologically characterized by an apparent dissociation constant (K(d)) of 6.1 +/- 5.0 microM and a stoichiometry of 3.7 +/- 1.5 sites per AChR. The fact that 5-SASL increased the apparent K(d) without changing the number of sites per AChR is indicative of a mutually exclusive action. From these results, an apparent inhibition constant (K(i)) of 75 +/- 31 microM for 5-SASL was calculated. In addition, 5-SASL affected neither the apparent K(d) (0.46 +/- 0.37 microM) nor the stoichiometry (1.07 +/- 0.57 sites per AChR) of the high-affinity PCP binding site. The second objective (ii) is achieved by titrating either quinacrine or ethidium into AChR native membranes in the absence or in the presence of increasing concentrations of 5-SASL. These experiments showed that 5-SASL efficiently increased the apparent K(d) of quinacrine without perturbing the interaction of ethidium with its high-affinity locus. Considering that (a) 5-SASL effectively quenched the AChR-bound quinacrine fluorescence (H. R. Arias, Biochim. Biophys. Acta 1347, 9-22, 1997) and (b) fluorescence-quenching is a short-range process, it is possible to suggest that 5-SASL displaces quinacrine from its high-affinity binding site by a steric mechanism. In this regard, a K(i) of 38 +/- 5 microM for 5-SASL was calculated. Concerning the last objective (iii), AChR-bound quinacrine or ethidium was back titrated with PCP. Two PCP K(i) values were obtained by fitting the displacement plots by nonlinear regression with two components. The lowest K(i) values obtained for either quinacrine (0.86 +/- 0.37 microM) or ethidium (0. 29 +/- 0.23 microM) displacement from their respective high-affinity binding sites coincide with the previously determined high-affinity [(3)H]PCP K(d). In addition, the highest K(i) values obtained for either NCA displacement are in the same concentration range as the observed low-affinity [(3)H]PCP K(d). Taking into account all experimental data, we reached the following conclusions: (i) fatty acid molecules, or at least 5-SASL, sterically interact with both the PCP low-affinity and the quinacrine high-affinity binding sites; (ii) the low-affinity PCP binding sites, as well as the high-affinity quinacrine locus, are located at the nonannular lipid domain of the AChR; and, finally, (iii) fatty acid molecules are not accessible to the lumen of the ion channel, indicating an allosteric mode of action for fatty acids to inhibit ion flux. Thus, the 5-SASL, the quinacrine high-affinity, and the PCP low-affinity binding sites are all located at overlapping nonannular loci on the muscle-type AChR.


Assuntos
Óxidos N-Cíclicos/farmacologia , Fenciclidina/farmacocinética , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Membrana Celular/metabolismo , Órgão Elétrico/metabolismo , Etídio/farmacologia , Cinética , Quinacrina/farmacocinética , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/isolamento & purificação , Marcadores de Spin , Torpedo , Trítio
4.
Biochim Biophys Acta ; 1376(2): 173-220, 1998 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-9748559

RESUMO

The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi


Assuntos
Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Humanos , Canais Iônicos/química , Antagonistas Nicotínicos/farmacologia
5.
J Neurosci Res ; 52(4): 369-79, 1998 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9589382

RESUMO

Over the past few decades much effort has been expended elucidating the key domains of the nicotinic acetylcholine receptor (AChR) responsible for agonist binding, ion conduction, and gating. An emerging concept in the receptor field has been to consider the receptor entity as a signal transducer that suffers modulatory control by allosterically acting ligands. Of particular interest are the molecules that inhibit the agonist-evoked ion flux activity in a noncompetitive manner: the so-called noncompetitive inhibitors (NCIs). The actual knowledge on the action of NCIs was obtained by using several drugs from exogenous origin. However, several lines of investigation indicate that the receptor protein can be modulated by endogenous substances other than acetylcholine. In this regard, we outline the progress evidenced on the localization of binding sites for drugs of endogenous origin that have been found to directly interact with the AChR in a noncompetitive fashion. Among them we can quote lipids such as steroids and fatty acids, the neurotransmitter 5-hydroxytryptamine (5-HT) and related compounds, as well as the neuropeptide substance P. We present the available experimental evidence indicating the existence of both luminal (located into the ion channel) and nonluminal (located out of the ion channel) binding sites for endogenous NCIs. Particularly, the binding site for substance P is found in the delta M2 domain. In addition, the locus for 5-HT is putatively located in the ion channel close to the serine ring, whereas the binding site for two competitive antagonists of 5-HT receptors (e.g., methysergide and spiperone) is located closer to the external end of the ion channel. Instead, fatty acid and steroid molecules bind to nonluminal sites. More specifically, fatty acids may bind to the annular lipid domain of the AChR or/and to the high-affinity quinacrine site (a NCI from exogenous origin) which is located at a nonannular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophilic domain of the AChR or/and at the lipid-protein interface, specifically, at the annular lipid domain and/or close to the nonannular quinacrine binding site.


Assuntos
Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Humanos , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores da Neurocinina-1/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores de Serotonina/fisiologia , Receptores de Esteroides/fisiologia
6.
Brain Res Brain Res Rev ; 25(2): 133-91, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9403137

RESUMO

The nicotinic acetylcholine receptor (AChR) presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of both alpha subunits there exist the binding sites for agonists such as the neurotransmitter acetylcholine (ACh) and for competitive antagonists such as d-tubocurarine. Agonists trigger the channel opening upon binding while competitive antagonists compete for the former ones and inhibit its pharmacological action. Identification of all residues involved in recognition and binding of agonist and competitive antagonists is a primary objective in order to understand which structural components are related to the physiological function of the AChR. The picture for the localisation of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are mainly located on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are sequentially identical, the observed high and low affinity for agonists on the receptor is conditioned by the interaction of the alpha subunit with the delta or the gamma chain, respectively. This relationship is opposite for curare-related drugs. This molecular interaction takes place probably at the interface formed by the different subunits. The principal component for the agonist/competitive antagonist binding sites involves several aromatic residues, in addition to the cysteine pair at 192-193, in three loops-forming binding domains (loops A-C). Other residues such as the negatively changed aspartates and glutamates (loop D), Thr or Tyr (loop E), and Trp (loop F) from non-alpha subunits were also found to form the complementary component of the agonist/competitive antagonist binding sites. Neurotoxins such as alpha-, kappa-bungarotoxin and several alpha-conotoxins seem to partially overlap with the agonist/competitive antagonist binding sites at multiple point of contacts. The alpha subunits also carry the binding site for certain acetylcholinesterase inhibitors such as eserine and for the neurotransmitter 5-hydroxytryptamine which activate the receptor without interacting with the classical agonist binding sites. The link between specific subunits by means of the binding of ACh molecules might play a pivotal role in the relative shift among receptor subunits. This conformational change would allow for the opening of the intrinsic receptor cation channel transducting the external chemical signal elicited by the agonist into membrane depolarisation. The ion flux activity can be inhibited by non-competitive inhibitors (NCIs). For this kind of drugs, a population of low-affinity binding sites has been found at the lipid-protein interface of the AChR. In addition, several high-affinity binding sites have been found to be located at different rings on the M2 transmembrane domain, namely luminal binding sites. In this regard, the serine ring is the locus for exogenous NCIs such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222, phencyclidine, and trifluoromethyliodophenyldiazirine. Trifluoromethyliodophenyldiazirine also binds to the valine ring, which is the postulated site for cembranoids. Additionally, the local anaesthetic meproadifen binding site seems to be located at the outer or extracellular ring. Interestingly, the M2 domain is also the locus for endogenous NCIs such as the neuropeptide substance P and the neurotransmitter 5-hydroxytryptamine. In contrast with this fact, experimental evidence supports the hypothesis for the existence of other NCI high-affinity binding sites located not at the channel lumen but at non-luminal binding domains. (ABSTRACT TRUNCATED)


Assuntos
Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animais , Sítios de Ligação , Inibidores da Colinesterase/farmacologia , Humanos , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Músculos/metabolismo , Neurônios/metabolismo , Agonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia , Conformação Proteica , Tubocurarina/metabolismo
7.
Biochim Biophys Acta ; 1347(1): 9-22, 1997 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-9233683

RESUMO

This work deals with the localization of the high-affinity non-competitive quinacrine binding site on the muscle-type nicotinic acetylcholine receptor (AChR). Specifically, quantitative steady-state fluorescence spectroscopy is used to determine whether quinacrine binds to a site located at either the annular or the non-annular lipid domain. For this purpose, we measure the ability of spin-labelled phosphatidylcholine (SL-PC) to quench AChR-bound quinacrine, AChR-bound ethidium and membrane-partitioned 7-(9-anthroyloxy)stearate (7-AS) fluorescence. Additionally, we compare the accessibility of SL-PC which is considered to bind only to the annular lipid domain of the AChR with the accessibility of two non-annular domain-sensing lipids such as 5-doxylstearate (5-SAL) and spin-labelled androstane (ASL). Initial experiments using 7-AS established the experimental conditions for maximum SL-PC membrane partitioning. The non-specific quenching elicited by increasing turbidity of the sample after addition of SL-PC is corrected by means of parallel experiments with unlabelled egg yolk phosphatidylcholine. After correction, the SL-PC quenching experiments show the following order in quenching efficiency: 7-AS > quinacrine >> ethidium. The relative intrinsic sensitivity of quinacrine to TEMPO paramagnetic quenching in acetonitrile is considered to be approximately two times higher than that for 7-AS. Thus, SL-PC was found to be more accessible (about 5-fold) to the membrane-partitioned 7-AS than to the quinacrine locus. In addition, SL-PC was virtually not accessible to the high-affinity non-luminal binding site for ethidium. The relative capacity of SL-PC, 5-SAL, and ASL to quench AChR-bound quinacrine fluorescence indicated that the spin-labelled lipid accessibility to the quinacrine binding site follows the order: 5-SAL > ASL >> SL-PC. Examination of the effect of high concentrations of 5-SAL, of its unlabelled parent stearate, and of SL-PC on ethidium and quinacrine binding showed that: (a) both fatty acids displace quinacrine, but not ethidium, from its high-affinity binding site, however (b) 5-SAL was found to be more effective than stearate to displace quinacrine from its locus, whereas (c) SL-PC competes neither for the ethidium locus nor for the quinacrine binding site. The results suggest that the high-affinity binding site for quinacrine is located at a non-annular lipid domain of the AChR. This particular area has been considered to be located at the intramolecular interfaces of the five AChR subunits and/or at the interstices of the transmembrane domains.


Assuntos
Lipídeos/química , Quinacrina/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Corantes Fluorescentes , Metabolismo dos Lipídeos , Quinacrina/metabolismo , Receptores Nicotínicos/metabolismo
8.
Arch Biochem Biophys ; 340(1): 154-8, 1997 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-9126288

RESUMO

This work provides evidence of a physical instance in which some proteins that are usually inactivated under strong chaotropic conditions may become fully resistant through the occupancy of their binding sites with suitable ligands. In this regard, we found that Moluccella laevis lectin remains stable in the presence of denaturant concentrations of urea when an appropriate saccharide is bound to the protein (Alperin, D.M., Latter, H., Lis, H., and Sharon, N. (1992) Biochem. J. 285, 1-4). Extending this finding, we now demonstrate that the occupancy of the ligand binding sites of concanavalin A (Con A) with appropriate carbohydrates completely prevents the denaturation course elicited by 8 M urea at pH 7.4. In addition, the protecting efficiency of the saccharides was shown to be directly related to their specificities for the lectin. The observed saccharide protection follows the order:methyl alpha-D-mannopyranoside > methyl alpha-D-glucopyr-anoside > mannose > fructose > glucose. Concomitantly, the active tetrameric lectin with a molecular mass of approximately 105 kDa is preserved in 8 M urea when methyl alpha-D-mannopyranoside (100 mM) is present in the medium.


Assuntos
Concanavalina A/química , Regulação Alostérica , Ligantes , Oligossacarídeos/química , Ligação Proteica , Desnaturação Proteica , Relação Estrutura-Atividade , Ureia/química
9.
Arch Biochem Biophys ; 333(1): 1-11, 1996 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-8806747

RESUMO

This paper displays an attempt to elucidate the inhibitory mechanism of the nicotinic acetylcholine receptor (AChR) by spectroscopic means. Specifically, quantitative fluorescence spectroscopy was used to characterize: (1) the mechanism of quinacrine binding to its high-affinity noncompetitive inhibitor site located at the lipid-protein interface of the AChR and (2) the process by which agonists at high concentrations sterically compete for the quinacrine locus. For the first purpose, we study the temperature and ionic strength dependence of quinacrine binding by measuring the apparent dissociation constant (Kd) of quinacrine at the temperature range of 4-23 degrees C and in the sodium chloride (NaCl) concentration order of 0-250 mM. For the second objective, AChR native membranes from Torpedo californica electric organ suspended in buffer 10 mM sodium phosphate, pH 7.4, were preincubated with quinacrine for 2 h in the presence or in the absence of phencyclidine (PCP). Then, the PCP-sensitive quinacrine fluorescence was monitored while high concentrations of cholinergic agonists such as suberyldicholine, acetylcholine (ACh), or carbamylcholine were added to the suspension. By repeating these agonist back titrations at 4, 9, and 15 degrees C in the absence of NaCl and at 4 degrees C in the presence of 100 mM NaCl, we determined the temperature and ionic strength dependence of agonist binding to the quinacrine domain. These experiments suggest that the binding of both quinacrine (measured in the temperature range from 15 to 23 degrees C) and agonists at high concentrations (measured in the temperature regime of 4-15 degrees C) are enthalpy-driven processes, albeit that quinacrine binding is exothermic and agonist binding is endothermic. One plausible model to explain our results is that the quinacrine molecule needs first to be sterically well oriented to further enter into its binding site located in a crevice at the lipid-protein interface, whereas agonist molecules do not. Additionally, a relatively minimal electrostatic component is present in the quinacrine locus. Interestingly, the agonist inhibition constant values determined at 4 degrees C in the presence of 100 mM NaCl showed an exact correlation (slope = 1.03) with the reported concentration values of agonist that inhibit 50% of the maximum 86Rb+ efflux from AChR native vesicles in a 10-s assay with 80-85% of the alpha-bungarotoxin AChR sites occupied at zero membrane potential [S. A. Forman, L. L. Firestone, and K. W. Miller (1987) Biochemistry 26, 2807-2814]. This interdependence strongly supports the existence of a structural relationship between the agonist self-inhibitory binding site and the quinacrine locus. Although there exist evidence indicating that the process of agonist self-inhibition is mediated by a steric blockage of the ion channel, the occurrence of an agonist self-inhibitory binding site not located in the lumen channel indicates an allosteric mechanism for ion channel inhibition.


Assuntos
Agonistas Nicotínicos/metabolismo , Quinacrina/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Órgão Elétrico/metabolismo , Técnicas In Vitro , Cinética , Modelos Biológicos , Concentração Osmolar , Fenciclidina/metabolismo , Cloreto de Sódio , Temperatura , Termodinâmica , Torpedo/metabolismo
10.
J Neurosci Res ; 44(2): 97-105, 1996 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-8723217

RESUMO

A major focus of current research on the nicotinic acetylcholine receptor (AChR) has been to understand the molecular mechanism of ion channel inhibition. In particular, we put special emphasis on the description of the localization of the agonist self-inhibitory binding site. Binding of agonist in the millimolar concentration range to this particular site produces inhibition of the ion flux activity previously elicited by the same agonist at micromolar concentrations. Due to the similitude in the pharmacological and electrophysiological behavior in inhibiting the ion channel of both high agonist concentrations and noncompetitive antagonists, we first describe the localization of noncompetitive inhibitor binding sites on the AChR. There is a great body of experimental evidence for the existence and location of luminal high-affinity noncompetitive inhibitor binding sites. In this regard, the most simple mechanism to describe the action of noncompetitive inhibitors which bind to luminal sites and, by its semblance, the agonist self-inhibition itself, is based on the assumption that these compounds enter the open channel, bind to different rings within the M2 transmembrane domain of the receptor, and block cation flux by occluding the receptor pore. However, the existence of high-affinity nonluminal noncompetitive inhibitor binding sites is not consistent with the open-channel-blocking mechanism. Instead, the presence of the quinacrine locus at the lipid-protein (alpha M1) interface approximately 7 A from the lipid-water interface and the ethidium domain located approximately 46 A from the membrane surface in the wall of the vestibule open the possibility for the regulation of cation permeation by an allosteric process. Additionally, the observed (at least partially) overlapping between the quinacrine and the agonist self-inhibitory binding site also suggests an allosteric process for agonist self-inhibition. For this alternative mechanism, cholinergic agonist molecules first need to be partitioned into (or to be adsorbed onto) the lipid membrane to further interact with its binding site located at the lipid-protein interface.


Assuntos
Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiologia , Animais , Sítios de Ligação , Ligação Competitiva , Membrana Celular/fisiologia , Canais Iônicos/fisiologia , Cinética , Modelos Estruturais , Músculo Esquelético/fisiologia , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/metabolismo , Conformação Proteica , Quinacrina/metabolismo , Receptores Nicotínicos/metabolismo
11.
Mol Membr Biol ; 13(1): 1-17, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-9147657

RESUMO

The nicotinic acetylcholine receptor presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of the alpha subunit exist the binding sites for agonists such as the neurotransmitter acetylcholine, which upon binding trigger the channel opening, and for competitive antagonists such as d-tubocurarine, which compete for the former inhibiting its pharmacological action. For non-competitive inhibitors, a population of low-affinity binding sites have been found at the lipid-protein interface of the nicotinic acetylcholine receptor. In addition, at the M2 transmembrane domain, several high-affinity binding sites have been found for non-competitive inhibitors such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222 and the hydrophobic probe trifluoromethyl-iodophenyldiazirine. They are known as luminal binding sites. Although the local anaesthetic meproadifen seems to be located between the hydrophobic domains M2-M3, this locus is considered to form part of the channel mouth, thus this site can also be called a luminal binding site. In contraposition, experimental evidences support the hypothesis of the existence of other high-affinity binding sites for non-competitive inhibitors located not at the channel lumen, but at non-luminal binding domains. Among them, we can quote the binding site for quinacrine, which is located at the lipid-protein interface of the alpha M1 domain, and the binding site for ethidium, which is believed to interact with the wall of the vestibule very far away from both the lumen channel and the lipid membrane surface. The aim of this review is to discuss these recent findings relative to both structurally and functionally relevant aspects of non-competitive inhibitors of the nicotinic acetylcholine receptor. We will put special emphasis on the description of the localization of molecules with non-competitive antagonist properties that bind with high-affinity to luminal and non-luminal domains. The information described herein was principally obtained by means of methods such as photolabelling and site-directed mutagenesis in combination with patch-clamp. Our laboratory has contributed with data obtained by using biophysical approaches such as paramagnetic electron spin resonance and quantitative fluorescence spectroscopy.


Assuntos
Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Marcadores de Afinidade , Animais , Sítios de Ligação , Ligação Competitiva , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Mutagênese Sítio-Dirigida , Antagonistas Nicotínicos/química , Técnicas de Patch-Clamp , Fotoquímica , Receptores Nicotínicos/genética , Espectrometria de Fluorescência
12.
Mol Membr Biol ; 12(4): 339-47, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8747279

RESUMO

It was previously demonstrated that high concentrations of cholinergic agonists such as acetylcholine (ACh), carbamylcholine (CCh), suberyldicholine (SubCh) and spin-labelled acetylcholine (SL-ACh) displaced quinacrine from its high-affinity binding site located at the lipid-protein interface of the nicotinic acetylcholine receptor (AChR) (Anas, H. R. and Johnson, D. A. (1995) Biochemistry, 34, 1589-1595). In order to account for the agonist self-inhibitory binding site which overlaps, at least partially, with the quinacrine binding site, we determined the partition coefficient (Kp) of these agonists relative to the local anaesthetic tetracaine in AChR native membranes from Torpedo californica electric organ by examining (1) the ability of tetracaine and SL-ACh to quench membrane-partitioned 1-pyrenedecanoic acid (C10-Py) monomer fluorescence, and (2) the ability of ACh, CCh and SubCh to induce an increase in the excimer/monomer ratio of C10-Py-labelled AChR membrane fluorescence. To further assess the differences in agonist accessibility to the quinacrine binding site, we calculated the agonist concentration in the lipid membrane (CM) at an external agonist concentration high enough to inhibit 50% of quinacrine binding (IC50), which in turn was obtained by agonist back titration of AChR-bound quinacrine. Initial experiments established that high agonist concentrations do not affect either transmembrane proton concentration equilibria (pH) of AChR membrane suspension or AChR-bound quinacrine fluorescence spectra. The agonist membrane partitioning experiments indicated relatively small (< or = 20) Kp values relative to tetracaine. These values follow the order: SL-ACh>SubCh>>CCh-ACh. A direct correlation was observed between Kp and the apparent inhibition constant (Ki) for agonists to displace AChR-bound quinacrine. Particularly, agonist with high KpS such as SL-ACh and SubCh showed low Ki values, and this relationship was opposite for CCh and ACh. The calculated CM values indicated significant (between 7 and 54 mM) agonist accessibility to lipid membrane. By themselves, these results support the conjecture that agonist self-inhibition seems to be mediated by the quinacrine binding site via a membrane approach mechanism. The existence of an agonist self-inhibitory binding site, not located in the channel lumen would indicate an allosteric mechanism of ion channel inhibition; however, we can not discard that the process of agonist self-inhibition can also be mediated by a steric blockage of the ion channel.


Assuntos
Membrana Celular/metabolismo , Agonistas Nicotínicos/metabolismo , Quinacrina/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/análogos & derivados , Acetilcolina/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Carbacol/metabolismo , Colina/análogos & derivados , Colina/metabolismo , Fluorometria , Cinética , Lipídeos de Membrana/metabolismo , Prótons , Receptores Nicotínicos/química , Marcadores de Spin , Tetracaína/metabolismo , Torpedo
13.
Biochim Biophys Acta ; 1190(2): 393-401, 1994 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-8142441

RESUMO

Interactions between merocyanine 540 (MC540) and nicotinic acetylcholine receptor (AChR) have been studied by visible absorption spectroscopy using native receptor-rich membranes from Discopyge tschudii electric tissue and liposomes obtained by aqueous dispersion of endogenous lipids extracted from the same tissue. The fact that merocyanine partitions into the membrane when this is in the liquid-crystalline state, exhibiting a characteristic peak at 567 nm, was exploited to obtain quantitative information about the physical state of the AChR-rich membrane. Spectra of MC540 revealed that this molecule was preferentially incorporated into AChR-rich membranes, with an affinity (Kdapp 30 microM) 10-fold higher than that in liposomes (Kdapp 290 microM). Changes were observed in the equilibrium dissociation constant of MC540 at different temperatures: the two-fold higher affinity at 8 degrees C than at 23 degrees C can be rationalized in terms of a higher value of the overall dimerization constant (Kdim) at the lower temperature. The local anaesthetic benzocaine competed for MC540 binding sites with higher potency in AChR-rich native membranes than in liposomes made with endogenous lipids. This competition was found to be AChR concentration-dependent, whereas in liposomes the displacement was constant at different lipid/MC540 molar ratios. Titration experiments yielded an apparent dissociation constant for benzocaine of 0.6 mM and 0.7 mM for liposomes and AChR-rich membranes, respectively. The possible location of the benzocaine binding site is deduced from the competition experiments to be at the lipid annulus surrounding the nicotinic AChR protein.


Assuntos
Órgão Elétrico/metabolismo , Pirimidinonas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Benzocaína/metabolismo , Ligação Competitiva , Lipossomos/química , Proteínas de Membrana/metabolismo , Pirimidinonas/química , Temperatura
14.
Biochim Biophys Acta ; 1027(3): 287-94, 1990 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-2168759

RESUMO

Interactions between steroids and the nicotinic acetylcholine receptor (AChR) have been studied in native membrane vesicles from Torpedo marmorata electric organ by electron spin resonance (ESR) and fluorescence techniques. ESR spectra of spin-labelled cholestane (CSL) revealed that this steroid probe was incorporated into the AChR-rich membrane vesicles in regions which were to a certain extent enriched preferentially in the steroid, both in the presence and in the absence of local anaesthetics. Since the nitroxide group present in CSL is also a paramagnetic quencher of the intrinsic protein fluorescence, this property was used to characterize the AChR-steroid interactions. The quenching induced by CSL was sensitive both to AChR concentration and to the action of cholinergic agonists. In competition experiments, the ability of CSL to quench the AChR intrinsic fluorescence was markedly inhibited by benzocaine, tetracaine and QX-222 (a quaternary trimethylammonium derivative of lidocaine), and was totally inhibited by procaine. The effectiveness of local anaesthetics in inhibiting CSL-induced quenching followed the order: procaine much greater than benzocaine approximately greater than tetracaine greater than QX-222. This inhibition effect was shown not to be charge-dependent. The data can be interpreted in terms of a model requiring specific association sites for local anaesthetics on the hydrophobic surface of the AChR which at least partially overlap with those for steroids.


Assuntos
Anestésicos Locais/farmacologia , Receptores Nicotínicos/metabolismo , Esteroides/metabolismo , Animais , Ligação Competitiva , Membrana Celular/efeitos dos fármacos , Colestanos , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Receptores Nicotínicos/efeitos dos fármacos , Espectrometria de Fluorescência , Marcadores de Spin , Torpedo
15.
J Neurochem ; 49(5): 1341-7, 1987 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-3117974

RESUMO

The in vivo labeling of electrocyte lipids is followed after injection of radioactive glycerol and two fatty acids, oleate and arachidonate, into the electric organ of an elasmobranch (Discopyge tschudii). De novo synthesis of lipids and acyl-exchange reactions are operative in the electrocyte. The three precursors are preferentially incorporated into phosphatidylcholine, phosphatidylinositol, and triacylglycerols. The highest specific activities are attained by triacylglycerols and polyphosphoinositides. Electrocyte stacks from electric organ show an efficient and continuous esterification of oleate and arachidonate into lipids after several hours of incubation. Except for an apparently more active labeling of triacylglycerols, which is attributed to the larger availability of free fatty acid precursors under the in vitro experimental conditions, the pattern of lipid labeling is similar to that attained in vivo. 32P-labeled lipids are also steadily produced in electrocyte stacks (24 h of incubation with [32P]phosphate) using glucose as the sole exogenous source of energy. Polyphosphoinositides are the lipids preferentially labeled. The ability to sustain the labeling of lipids under in vitro conditions renders isolated electrocyte stacks an interesting model for future research on lipid involvement in cholinergic function.


Assuntos
Peixe Elétrico/metabolismo , Órgão Elétrico/metabolismo , Metabolismo dos Lipídeos , Animais , Ácido Araquidônico , Ácidos Araquidônicos/metabolismo , Radioisótopos de Carbono , Esterificação , Glicerol/metabolismo , Cinética , Ácido Oleico , Ácidos Oleicos/metabolismo , Fosfatos/metabolismo , Ácidos Fosfatídicos/biossíntese , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Fosfatidilinositóis/biossíntese , Fosfatidilserinas/biossíntese , Triglicerídeos/biossíntese , Trítio
16.
J Neurochem ; 49(5): 1333-40, 1987 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-2822851

RESUMO

The composition of phospholipids from electric organ and from membranes enriched in acetylcholine receptors (AChRs) is analyzed in three elasmobranch fish (Torpedo marmorata, Torpedo californica, and Discopyge tschudii). Irrespective of their purity, AChR-containing membranes are similar to electric organ in lipid and fatty acid composition. The following characteristics are common to the three species: (a) Choline, ethanolamine, and serine glycerophospholipids account for 80-90% of the phospholipids. (b) Their major fatty acid constituents are monoenes, saturates, and long-chain (n-3) polyenes (especially docosahexaenoate). (c) A large proportion of the ethanolamine glycerophospholipids (30-50%) is made up by plasmenylethanolamine, which contains fewer polyenes than phosphatidylethanolamine per mole of lipid. (d) Polyphosphoinositides represent 20-30% of the inositides of electric organ. (e) Phosphatidylinositol and phosphatidate have large proportions of 20- and 22-carbon polyenes. (f) Diphosphatidylglycerol and triacylglycerols are rich in oleate but also contain long-chain polyenes. (g) Sphingomyelin has monoenes and saturates ranging from 14 to 26 carbons. Species-related variations are observed (a) in the ratios between some phospholipid classes and subclasses and (b) in the relative abundance of the major polyunsaturated acyl chains of phospholipids. Despite these differences, the average unsaturation and length of fatty acids in major phospholipid classes are similar for the three species.


Assuntos
Membrana Celular/análise , Peixe Elétrico/metabolismo , Órgão Elétrico/análise , Lipídeos/análise , Receptores Colinérgicos/metabolismo , Torpedo/metabolismo , Animais , Colesterol/análise , Ácidos Graxos/análise , Lipídeos de Membrana/análise , Ácidos Fosfatídicos/análise , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Fosfatidilinositóis/análise , Fosfatidilserinas/análise , Especificidade da Espécie , Esfingomielinas/análise
17.
Neurochem Int ; 11(1): 101-6, 1987.
Artigo em Inglês | MEDLINE | ID: mdl-20501149

RESUMO

Phospholipid phosphate group metabolism has been studied in the electrocyte of Discopyge tschudii (Torpedinidae), following for several hours the incorporation and distribution of [(32)P] in living electrocyte stacks and acetylcholine receptor membranes prepared therefrom. Conditions are reported for the incubation of electrocyte columns in vitro with [(32)P]O(4)Na(2)H resulting in active and sustained incorporation of the precursor in minority phospholipids. Phosphatidic acid, phosphatidylinositol, phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate, representing 2.3, 2.1, 0.3 and 0.2% respectively of the total phospholipids were almost exclusively labelled. Relative specific activities of 13, 7, 56 and 140 respectively were attained. These values were much higher than those of major phospholipids like phosphatidylcholine (0.03) or phosphatidylethanolamine (0.01). Subcellular fractionation of the metabolically active electrocyte stacks yielded various membrane fractions differing in their degree of [(32)P]-labelling, specially in phosphatidic acid and polyphosphoinositides. The fraction richest in nicotinic acetylcholine receptor protein showed the highest levels of [(32)P] incorporation. The results indicate that phosphorylation reactions are actively operative in certain phospholipid classes of the electrocyte and in membranes obtained from these cells after in vitro labelling with [(32)P]. In particular, phosphomonoester groups in polyphosphoinositides and the phosphate group in phosphatidic acid display a high metabolic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA