RESUMO
The COVID-19 pandemic has overwhelmed healthcare systems and triggered global economic downturns. While vaccines have reduced the lethality rate of SARS-CoV-2 to 0.9% as of October 2024, the continuous evolution of variants remains a significant public health challenge. Next-generation medical therapies offer hope in addressing this threat, especially for immunocompromised individuals who experience prolonged infections and severe illnesses, contributing to viral evolution. These cases increase the risk of new variants emerging. This study explores miniACE2 decoys as a novel strategy to counteract SARS-CoV-2 variants. Using in silico design and molecular dynamics, blocking proteins (BPs) were developed with stronger binding affinity for the receptor-binding domain of multiple variants than naturally soluble human ACE2. The BPs were expressed in E. coli and tested in vitro, showing promising neutralizing effects. Notably, miniACE2 BP9 exhibited an average IC50 of 4.9 µg/mL across several variants, including the Wuhan strain, Mu, Omicron BA.1, and BA.2 This low IC50 demonstrates the potent neutralizing ability of BP9, indicating its efficacy at low concentrations.Based on these findings, BP9 has emerged as a promising therapeutic candidate for combating SARS-CoV-2 and its evolving variants, thereby positioning it as a potential emergency biopharmaceutical.
Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , COVID-19 , Simulação de Dinâmica Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Humanos , COVID-19/virologia , COVID-19/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Simulação por Computador , Pandemias , Ligação Proteica , Betacoronavirus/imunologia , Betacoronavirus/efeitos dos fármacos , Testes de NeutralizaçãoRESUMO
BACKGROUND/OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, was declared a public health emergency in early 2020. The infection initiates when the receptor-binding domain (RBD) of the viral spike protein binds to human angiotensin-converting enzyme 2 (ACE2). Despite the success of vaccination efforts, the emergence of new variants highlights the ongoing need for treatments targeting these evolving strains. In silico methods previously identified peptides BP2, BP9, and BP11 as being capable of disrupting the RBD-ACE2 interaction, though their efficacy has not been experimentally validated until now. METHODS: In this study, these peptides were recombinantly produced in the yeast Komagataella phaffii, and the activity was assessed in vitro using binding assays with multiple RBD variants and the inhibition of the RBD-ACE2 interaction. RESULTS: The production yield for BP2, BP9, and BP11 was 14.34, 4.01, and 1.35 mg per culture liter, respectively. Noteworthy, the three BPs interacted with the RBD of SARS-CoV-2 variants of concern, with BP2 showing higher recognition. Finally, the BPs showed an RBD/hACE2 interaction blocking capacity with IC50 values between 1.03 and 5.35 nM, with BP2 showing the lowest values among the evaluated peptides. CONCLUSIONS: These results demonstrate that BP2, specifically, is a promising candidate for the development of novel therapeutic interventions targeting SARS-CoV-2 and other coronaviruses that use hACE2 for cellular entry.
RESUMO
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
RESUMO
Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.
Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Células-Tronco Embrionárias Murinas/ultraestrutura , Corpos Multivesiculares/metabolismoRESUMO
Las células madre mesenquimales son células pluripotentes y adultas con morfología fibroblastoide y plasticidad hacia diversos linajes celulares como condrocitos, osteocitos y adipocitos entre otros. Estas células pueden ser aisladas principalmente de médula ósea, sangre de cordón umbilical y tejido adiposo de donde se han logrado establecer cultivos que han permitido estudiar sus propiedades funcionales y fenotípicas. Aunque la información obtenida hasta la fecha no brinda un conocimiento completo, se espera que con el desarrollo de próximas investigaciones se aclaren diversos aspectos biológicos para implementar su uso en medicina regenerativa. Esta revisión presenta una visión general sobre las células madre mesenquimales: morfología e inmunofenotipo, ontogenia, fuentes de obtención y aplicaciones clínicas.