Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 191: 809-816, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29145133

RESUMO

Foul odors comprise generally a complex mixture of molecules, where reduced sulfur compounds play a key role due to their toxicity and low odor threshold. Previous reports on treating mixtures of sulfur compounds in single biofilters showed that hydrogen sulfide (H2S) interferes with the removal and degradation of other sulfur compounds. In this study, hydrogen sulfide (H2S) and dimethyl disulfide (DMDS) were fed to an alkaline biotrickling filter (ABTF) at pH 10, to evaluate the simultaneous removal of inorganic and organic sulfur compounds in a single, basic-pH system. The H2S-DMDS mixture was treated for more than 200 days, with a gas residence time of 40 s, attaining elimination capacities of 86 gDMDS m-3 h-1 and 17 gH2S m-3 h-1 and removal efficiencies close to 100%. Conversion of H2S and DMDS to sulfate was generally above 70%. Consumption of sulfide and formaldehyde was verified by respirometry, suggesting the coexistence of both methylotrophic and chemoautotrophic breakdown pathways by the immobilized alkaliphilic biomass. The molecular biology analysis showed that the long-term acclimation of the ABTF led to a great variety of bacteria, predominated by Thioalkalivibrio species, while fungal community was notoriously less diverse and dominated by Fusarium species.


Assuntos
Dissulfetos/química , Sulfeto de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Reatores Biológicos , Dissulfetos/análise , Filtração , Sulfeto de Hidrogênio/análise , Sulfatos/metabolismo , Sulfetos/metabolismo , Compostos de Enxofre/metabolismo
3.
Appl Microbiol Biotechnol ; 99(1): 97-107, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25056290

RESUMO

Excess biomass buildup in biotrickling filters leads to low performance. The effect of biomass accumulation in a biotrickling filter (BTF) packed with polyurethane foam (PUF) was assessed in terms of hydrodynamics and void space availability in a system treating dimethyl disulfide (DMDS) vapors with an alkaliphilic consortium. A sample of colonized support from a BTF having been operating for over a year was analyzed, and it was found that the BTF void bed fraction was reduced to almost half of that calculated initially without biomass. Liquid flow through the examined BTF yielded dispersion coefficient values of 0.30 and 0.72 m(2) h(-1), for clean or colonized PUF, respectively. 3D images of attached biomass obtained with magnetic resonance imaging allowed to calculate the superficial area and the biofilm volume percentage and depth as 650 m(2) m(-3), 35%, and 0.6 mm respectively. A simplified geometric approximation of the complex PUF structure was proposed using an orthogonal 3D mesh that predicted 600 m(2) m(-3) for the same biomass content. With this simplified model, it is suggested that the optimum biomass content would be around 20% of bed volume. The activity of the microorganisms was evaluated by respirometry and the kinetics represented with a Haldane equation type. Experimentally determined parameters were used in a mathematical model to simulate the DMDS elimination capacity (EC), and better description was found when the removal experimental data were matched with a model including liquid axial dispersion in contrast to an ideal plug flow model.


Assuntos
Filtros de Ar , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Dissulfetos/metabolismo , Filtração/métodos , Consórcios Microbianos , Biomassa , Imageamento por Ressonância Magnética , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA