Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1021525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101752

RESUMO

Introduction: In the past years, robotic lower-limb exoskeletons have become a powerful tool to help clinicians improve the rehabilitation process of patients who have suffered from neurological disorders, such as stroke, by applying intensive and repetitive training. However, active subject participation is considered to be an important feature to promote neuroplasticity during gait training. To this end, the present study presents the performance assessment of the AGoRA exoskeleton, a stance-controlled wearable device designed to assist overground walking by unilaterally actuating the knee and hip joints. Methods: The exoskeleton's control approach relies on an admittance controller, that varies the system impedance according to the gait phase detected through an adaptive method based on a hidden Markov model. This strategy seeks to comply with the assistance-as-needed rationale, i.e., an assistive device should only intervene when the patient is in need by applying Human-Robot interaction (HRI). As a proof of concept of such a control strategy, a pilot study comparing three experimental conditions (i.e., unassisted, transparent mode, and stance control mode) was carried out to evaluate the exoskeleton's short-term effects on the overground gait pattern of healthy subjects. Gait spatiotemporal parameters and lower-limb kinematics were captured using a 3D-motion analysis system Vicon during the walking trials. Results and Discussion: By having found only significant differences between the actuated conditions and the unassisted condition in terms of gait velocity (ρ = 0.048) and knee flexion (ρ ≤ 0.001), the performance of the AGoRA exoskeleton seems to be comparable to those identified in previous studies found in the literature. This outcome also suggests that future efforts should focus on the improvement of the fastening system in pursuit of kinematic compatibility and enhanced compliance.

2.
Biosensors (Basel) ; 12(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291010

RESUMO

Stroke disease leads to a partial or complete disability affecting muscle strength and functional mobility. Early rehabilitation sessions might induce neuroplasticity and restore the affected function or structure of the patients. Robotic rehabilitation minimizes the burden on therapists by providing repetitive and regularly monitored therapies. Commercial exoskeletons have been found to assist hip and knee motion. For instance, unilateral exoskeletons have the potential to become an effective training system for patients with hemiparesis. However, these robotic devices leave the ankle joint unassisted, essential in gait for body propulsion and weight-bearing. This article evaluates the effects of the robotic ankle orthosis T-FLEX during cooperative assistance with the AGoRA unilateral lower-limb exoskeleton (hip and knee actuation). This study involves nine subjects, measuring muscle activity and gait parameters such as stance and swing times. The results showed a reduction in muscle activity in the Biceps Femoris of 50%, Lateral Gastrocnemius of 59% and Tibialis Anterior of 35% when adding T-FLEX to the AGoRA unilateral lower-limb exoskeleton. No differences were found in gait parameters. Nevertheless, stability is preserved when comparing the two legs. Future works should focus on evaluating the devices in ground tests in healthy subjects and pathological patients.


Assuntos
Exoesqueleto Energizado , Humanos , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA