Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(7): 3578-3589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38450978

RESUMO

BACKGROUND: Plant defense elicitors are valuable tools in sustainable agriculture, providing an environmentally friendly and effective means of enhancing plant defense and promoting plant health. Fusarium head blight (FHB) is one of the most important fungal diseases of cereal crops worldwide. The PSP1 is a novel biopesticide formulated based on an elicitor, the extracellular protein AsES, from the fungus Sarocladium strictum. The present work aimed to evaluate the effectiveness of PSP1 in controlling FHB under field conditions. Experiments were conducted during three consecutive growing seasons (2019, 2020, and 2021). Three biostimulant treatments were tested in different physiological stages (from late tillering to heading stage), and FHB inoculations were performed at anthesis. Disease parameters, seed parameters, grain yield, and grain quality parameters were evaluated. RESULTS: Depending on the year and the genotype, reductions in disease incidence (up to 11%) and disease severity (up to 5%) were reported, although these differences could not be attributed to the use of the PSP1 biostimulant. Occasional improvements in seed parameters and grain quality were observed, suggesting that early treatments could work better than late treatments, probably due to early activation/priming of defense response mechanisms. However, more studies are deemed necessary. CONCLUSION: The use of PSP1 biostimulant in commercial wheat crops could be a biological alternative or complement to traditional chemical fungicides to manage FHB. The reduced environmental impact and the potential benefits in grain yield and quality are other reasons that can generate new adherents of this technology in worldwide agriculture systems in the coming years. © 2024 Society of Chemical Industry.


Assuntos
Grão Comestível , Fusarium , Doenças das Plantas , Triticum , Fusarium/fisiologia , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Grão Comestível/microbiologia , Grão Comestível/crescimento & desenvolvimento , Hypocreales/fisiologia , Agentes de Controle Biológico/farmacologia
2.
Int J Food Microbiol ; 410: 110493, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37988795

RESUMO

Maize is one of the most important crops worldwide, being affected by several fungal species under field conditions. The study of plant-pathogen interaction plays a key role because fungal diseases are responsible for reducing grain yield and quality by increasing mycotoxin production. Thus, the present work aimed to evaluate the interaction of F. graminearum and F. verticillioides and mycotoxin production under field conditions along different physiological stages. During the 2019/2020 and 2020/2021 growing seasons, twelve maize genotypes were inoculated at the flowering stage (silking). Four treatments were applied using one isolate of each species: (i) F. graminearum; (ii) F. verticillioides; (iii) a combined inoculum (F. graminearum + F. verticillioides); (iv) and control treatment. Fungal diversity, disease evaluation, and mycotoxin contamination were evaluated at three different physiological stages: T1 (from R2 to R4), T2 (from R4 to R6), and T3 (at harvest time). A total of 15,907 Fusarium isolates were obtained. The results showed a predominance of F. verticillioides over F. graminearum in both years evaluated, reporting an increase in the occurrence of this species at late stages. Regarding mycotoxin contamination, no evidence was found supporting antagonism or synergism regarding isolates of both species used as inoculum under field conditions. The results reported in the present manuscript point out a major influence of climatic conditions on F. verticillioides predominance over F. graminearum, mainly during the late physiological stages. Furthermore, no clear relationship between mycotoxin concentration and physiological stages was established, suggesting that other grain factors, such as water activity and pH, could modulate mycotoxin production and accumulation under field conditions.


Assuntos
Fusarium , Micotoxinas , Micotoxinas/análise , Zea mays/microbiologia , Argentina , Grão Comestível/química , Doenças das Plantas/microbiologia
3.
J Sci Food Agric ; 100(2): 863-873, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31646638

RESUMO

BACKGROUND: Wheat is the most important winter crop in the world, being affected by the presence of fungal, mainly those belonging to the Fusarium genus. Fusarium head blight (FHB) is a serious disease that causes important economic damage and quantitative/qualitative losses, with Fusarium graminearum and Fusarium poae being two of the most isolated species worldwide. The present study aimed to evaluate the interaction between F. graminearum and F. poae and the effects on disease parameters, grain quality and mycotoxin contamination on five wheat genotypes under field conditions during three growing seasons. RESULTS: Statistical differences between Fusarium treatments were found for disease parameters, grain quality and mycotoxin contamination during the 2014/2015 growing season. High values of incidence (58.00 ± 8.00%), severity (6.28 ± 1.51%) and FHB index (4.72 ± 1.35) were observed for F. graminearum + F. poae treatment. Regarding grain quality, the results showed that the degradation of different protein fractions depends on each Fusarium species: glutenins were degraded preferably by F. graminearum (-70.82%), gliadins were degraded preferably by F. poae (-29.42%), whereas both protein fractions were degraded when both Fusarium species were present (-60.91% and -16.51%, respectively). Significant differences were observed for mycotoxin contamination between genotypes, with Proteo being the most affected (DON = 12.01 ± 3.67 µg g-1 ). In addition, we report that 3-ADON predominated over 15-ADON in the three seasons evaluated. CONCLUSION: Variations in plant-pathogen interaction (Fusarium-wheat pathosystem) should be considered at least in years with favorable climatic conditions for FHB development, as a result of the potential impact of this disease on grain quality and mycotoxin contamination. © 2019 Society of Chemical Industry.


Assuntos
Fusarium/metabolismo , Micotoxinas/análise , Doenças das Plantas/microbiologia , Triticum/química , Triticum/microbiologia , Fusarium/classificação , Micotoxinas/metabolismo , Estações do Ano , Sementes/química , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA