Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 8: 778, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163164

RESUMO

Silicosis is a lethal fibro-granulomatous pulmonary disease highly prevalent in developing countries, for which no proper therapy is available. Among a small series of N-acylhydrazones, the safrole-derived compound LASSBio-897 (3-thienylidene-3, 4-methylenedioxybenzoylhydrazide) raised interest due to its ability to bind to the adenosine A2A receptor. Here, we evaluated the anti-inflammatory and anti-fibrotic potential of LASSBio-897, exploring translation to a mouse model of silicosis and the A2A receptor as a site of action. Pulmonary mechanics, inflammatory, and fibrotic changes were assessed 28 days after intranasal instillation of silica particles in Swiss-Webster mice. Glosensor cAMP HEK293G cells, CHO cells stably expressing human adenosine receptors and ligand binding assay were used to evaluate the pharmacological properties of LASSBio-897 in vitro. Molecular docking studies of LASSBio-897 were performed using the genetic algorithm software GOLD 5.2. We found that the interventional treatment with the A2A receptor agonist CGS 21680 reversed silica particle-induced airway hyper-reactivity as revealed by increased responses of airway resistance and lung elastance following aerosolized methacholine. LASSBio-897 (2 and 5 mg/kg, oral) similarly reversed pivotal lung pathological features of silicosis in this model, reducing levels of airway resistance and lung elastance, granuloma formation and collagen deposition. In competition assays, LASSBio-897 decreased the binding of the selective A2A receptor agonist [3H]-CGS21680 (IC50 = 9.3 µM). LASSBio-897 (50 µM) induced modest cAMP production in HEK293G cells, but it clearly synergized the cAMP production by adenosine in a mechanism sensitive to the A2A antagonist SCH 58261. This synergism was also seen in CHO cells expressing the A2A, but not those expressing A2B, A1 or A3 receptors. Based on the evidence that LASSBio-897 binds to A2A receptor, molecular docking studies were performed using the A2A receptor crystal structure and revealed possible binding modes of LASSBio-897 at the orthosteric and allosteric sites. These findings highlight LASSBio-897 as a lead compound in drug development for silicosis, emphasizing the role of the A2A receptor as its putative site of action.

2.
Anesthesiology ; 117(3): 580-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22846675

RESUMO

BACKGROUND: Evidence suggests that nebulized lidocaine is beneficial in asthma therapy, but to what extent and the mechanisms underlying this effect remain poorly understood. The aim of this study was to assess the impact of lidocaine treatment using a murine model of allergic asthma characterized by expression of pivotal features of the disease: inflammation, mucus production, and lung remodeling. METHODS: A/J mice sensitized with ovalbumin were treated with inhaled lidocaine or vehicle immediately after ovalbumin intranasal challenges. Lung function, total and differential leukocytes in bronchoalveolar lavage fluid, peribronchial eosinophil density, interleukin (IL)-4, IL-5 and eotaxin-1 levels, epithelial mucus, collagen, extracellular-matrix deposition, matrix metalloproteinase-9 activity, and GATA-3 expression were evaluated. Between five and eight animals per group were used. RESULTS: Inhaled lidocaine inhibited ovalbumin-induced airway hyperreactivity to methacholine, and accumulation of lymphocytes, neutrophils, and eosinophils in bronchoalveolar lavage fluid 24 h after the last allergen provocation. Lidocaine administration also prevented other pathophysiological changes triggered by ovalbumin in lung tissue, including peribronchial eosinophil and neutrophil infiltration, subepithelial fibrosis, increased content of collagen and mucus, matrix metalloproteinase-9 activity, and increased levels of IL-4, IL-5, IL-13, and eotaxin-1. Furthermore, inhaled lidocaine inhibited lung tissue GATA-3 expression in ovalbumin-challenged mice. We also demonstrated that lidocaine inhibited the expression of GATA-3 in ovalbumin-stimulated T cells in vitro. CONCLUSIONS: Inhaled lidocaine prevents eosinophilic inflammation, overproduction of mucus, and peribronchial fibrosis in a murine model of asthma, and impaired airway hyperreactivity, possibly by inhibiting allergen-evoked GATA-3 expression and the subsequent up-regulation of proinflammatory cytokines and chemokines.


Assuntos
Anestésicos Locais/farmacologia , Asma/tratamento farmacológico , Brônquios/patologia , Lidocaína/farmacologia , Muco/metabolismo , Animais , Asma/imunologia , Asma/patologia , Modelos Animais de Doenças , Fibrose , Fator de Transcrição GATA3/análise , Fator de Transcrição GATA3/antagonistas & inibidores , Lidocaína/administração & dosagem , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Nebulizadores e Vaporizadores , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA