Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(1): 1590-612, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25588214

RESUMO

Applications of carbon-TiO2 materials have attracted attention in nanotechnology due to their synergic effects. We report the immobilization of TiO2 on carbon prepared from residues of the plant Manihot, commercial TiO2 and glycerol. The objective was to obtain a moderate loading of the anatase phase by preserving the carbonaceous external surface and micropores of the composite. Two preparation methods were compared, including mixing dry precursors and immobilization using a glycerol slurry. The evaluation of the micropore blocking was performed using nitrogen adsorption isotherms. The results indicated that it was possible to use Manihot residues and glycerol to prepare an anatase-containing material with a basic surface and a significant SBET value. The activities of the prepared materials were tested in a decomposition assay of indigo carmine. The TiO2/carbon eliminated nearly 100% of the dye under UV irradiation using the optimal conditions found by a Taguchi L4 orthogonal array considering the specific surface, temperature and initial concentration. The reaction was monitored by UV-Vis spectrophotometry and LC-ESI-(Qq)-TOF-MS, enabling the identification of some intermediates. No isatin-5-sulfonic acid was detected after a 60 min photocatalytic reaction, and three sulfonated aromatic amines, including 4-amino-3-hydroxybenzenesulfonic acid, 2-(2-amino-5-sulfophenyl)-2-oxoacetic acid and 2-amino-5-sulfobenzoic acid, were present in the reaction mixture.


Assuntos
Carbono/química , Corantes/isolamento & purificação , Índigo Carmim/isolamento & purificação , Manihot/química , Fotólise , Titânio/química , Corantes/química , Índigo Carmim/química , Raios Ultravioleta
2.
Food Chem ; 173: 725-32, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466082

RESUMO

Carbon-TiO2 composites were obtained from carbonised Manihot dulcis waste and TiO2 using glycerol as an additive and thermally treating the composites at 800 °C. Furthermore, carbon was obtained from manihot to study the adsorption, desorption and photocatalysis of carminic acid on these materials. Carminic acid, a natural dye extracted from cochineal insects, is a pollutant produced by the food industry and handicrafts. Its photocatalysis was observed under different atmospheres, and kinetic curves were measured by both UV-Vis and HPLC for comparison, yielding interesting differences. The composite was capable of decomposing approximately 50% of the carminic acid under various conditions. The reaction was monitored by UV-Vis spectroscopy and LC-ESI-(Qq)-TOF-MS-DAD, enabling the identification of some intermediate species. The deleterious compound anthracene-9,10-dione was detected both in N2 and air atmospheres.


Assuntos
Carmim/química , Corantes de Alimentos/química , Manihot/química , Nanopartículas/química , Carbono/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Fotólise , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA