Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Care Med ; 47(4): e292-e300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30855329

RESUMO

OBJECTIVES: Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation. DESIGN: Observational case-control study. SETTING: Two medical centers within one city. PARTICIPANTS (SUBJECTS): We enrolled 41 adult cardiac arrest patients in whom blood could be obtained within 6 hours of resuscitation. Two subjects were excluded following outlier analysis. Ten healthy subjects were controls. Sprague-Dawley rats were used in asphyxial cardiac arrest studies. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed a high-resolution liquid chromatography/mass spectrometry method and determined cardiolipins speciation in human brain, heart, and plasma within 6 hours of (return of spontaneous circulation) from 39 patients with cardiac arrest, 5 with myocardial infarction, and 10 healthy controls. Cerebral score was derived from brain-specific cardiolipins identified in plasma of patients with varying neurologic injury and outcome. Using a rat model of cardiac arrest, cardiolipins were quantified in plasma, brain, and heart. Human brain exhibited a highly diverse cardiolipinome compared with heart that allowed the identification of brain-specific cardiolipins. Nine of 26 brain-specific cardiolipins were detected in plasma and correlated with brain injury. The cerebral score correlated with early neurologic injury and predicted discharge neurologic/functional outcome. Cardiolipin (70:5) emerged as a potential point-of-care marker predicting injury severity and outcome. In rat cardiac arrest, a significant reduction in hippocampal cardiolipins corresponded to their release from the brain into systemic circulation. Cerebral score was significantly increased in 10 minutes versus 5 minutes no-flow cardiac arrest and naïve controls. CONCLUSIONS: Brain-specific cardiolipins accumulate in plasma early after return of spontaneous circulation and proportional to neurologic injury representing a promising novel biomarker.


Assuntos
Lesões Encefálicas/metabolismo , Cardiolipinas/sangue , Cardiomiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Animais , Reanimação Cardiopulmonar/métodos , Estudos de Casos e Controles , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Parada Cardíaca/metabolismo , Humanos , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
2.
Crit Care Med ; 47(3): 410-418, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30531185

RESUMO

OBJECTIVES: Traumatic brain injury triggers multiple cell death pathways, possibly including ferroptosis-a recently described cell death pathway that results from accumulation of 15-lipoxygenase-mediated lipid oxidation products, specifically oxidized phosphatidylethanolamine containing arachidonic or adrenic acid. This study aimed to investigate whether ferroptosis contributed to the pathogenesis of in vitro and in vivo traumatic brain injury, and whether inhibition of 15-lipoxygenase provided neuroprotection. DESIGN: Cell culture study and randomized controlled animal study. SETTING: University research laboratory. SUBJECTS: HT22 neuronal cell line and adult male C57BL/6 mice. INTERVENTIONS: HT22 cells were subjected to pharmacologic induction of ferroptosis or mechanical stretch injury with and without administration of inhibitors of ferroptosis. Mice were subjected to sham or controlled cortical impact injury. Injured mice were randomized to receive vehicle or baicalein (12/15-lipoxygenase inhibitor) at 10-15 minutes postinjury. MEASUREMENTS AND MAIN RESULTS: Pharmacologic inducers of ferroptosis and mechanical stretch injury resulted in cell death that was rescued by prototypical antiferroptotic agents including baicalein. Liquid chromatography tandem-mass spectrometry revealed the abundance of arachidonic/adrenic-phosphatidylethanolamine compared with other arachidonic/adrenic acid-containing phospholipids in the brain. Controlled cortical impact resulted in accumulation of oxidized phosphatidylethanolamine, increased expression of 15-lipoxygenase and acyl-CoA synthetase long-chain family member 4 (enzyme that generates substrate for the esterification of arachidonic/adrenic acid into phosphatidylethanolamine), and depletion of glutathione in the ipsilateral cortex. Postinjury administration of baicalein attenuated oxidation of arachidonic/adrenic acid-containing-phosphatidylethanolamine, decreased the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling positive cells in the hippocampus, and improved spatial memory acquisition versus vehicle. CONCLUSIONS: Biomarkers of ferroptotic death were increased after traumatic brain injury. Baicalein decreased ferroptotic phosphatidylethanolamine oxidation and improved outcome after controlled cortical impact, suggesting that 15-lipoxygenase pathway might be a valuable therapeutic target after traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Neurônios , Animais , Masculino , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Linhagem Celular , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Neurônios/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA