Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2135)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420545

RESUMO

Order-disorder phase transitions driven by temperature or light in soft matter materials exhibit complex dissipative structures. Here, we investigate the spatio-temporal phenomena induced by light in a dye-doped nematic liquid crystal layer. Experimentally, for planar anchoring of the nematic layer and high enough input power, photoisomerization processes induce a nematic-isotropic phase transition mediated by interface propagation between the two phases. In the case of a twisted nematic layer and for intermediate input power, the light induces a spatially modulated phase, which exhibits stripe patterns. The pattern originates as an instability mediated by interface propagation between the modulated and the homogeneous nematic states. Theoretically, the phase transition, emergence of stripe patterns and front dynamics are described on the basis of a proposed model for the dopant concentration coupled with the nematic order parameter. Numerical simulations show quite a fair agreement with the experimental observations.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26172647

RESUMO

Out-of-equilibrium systems exhibit domain walls between different states. These walls, depending on the type of connected states, can display rich spatiotemporal dynamics. In this Rapid Communication, we investigate the asymmetrical counterpropagation of fronts in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the different front shapes and propagation speeds. These fronts present dissimilar elastic deformations that are responsible for their asymmetric speeds. Theoretically, using a phenomenological model, we describe the observed dynamics with fair agreement.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25215746

RESUMO

Liquid crystals displays with tailoring electrodes exhibit complex spatiotemporal dynamics when a large voltage is applied. We report experimental observations of the appearance of a programmable zig-zag lattice using an in-plane-switching cell filled with a nematic liquid crystal. Applying a small voltage to a wide range of frequencies, the system exhibits an Ising wall lattice. Increasing the voltage, this lattice presents a spatial instability generating an undulating wall lattice, and to higher voltages it becomes zig-zag type. Experimentally, we characterize the bifurcations and phase diagram of the wall lattice. Theoretically, we develop, from first principles, a descriptive model. This model has a good qualitative agreement with experimental observations.


Assuntos
Eletricidade , Eletrodos , Cristais Líquidos , Anisotropia , Elasticidade , Vidro , Modelos Teóricos , Imagem Óptica , Transição de Fase , Gravação em Vídeo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA