Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 25(11): 3101-3121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37039938

RESUMO

Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.


Assuntos
Neoplasias , RNA Circular , Humanos , Neoplasias/genética , Neoplasias/diagnóstico , Prognóstico , Carcinogênese , Imunoterapia
2.
Clin Transl Oncol ; 25(2): 345-351, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36168086

RESUMO

Leukemia is defined as a heterogeneous group of hematological cancers whose prevalence is on the rise worldwide. Despite the large body of studies, the etiology of leukemia has not been fully elucidated. Leukemia stem cells (LSCs) are a subpopulation of cancer cells that sustain the growth of the leukemic clone and are the main culprit for the maintenance of the neoplasm. In contrast to most leukemia cells, LSCs are resistant to chemo- and radiotherapy. Several recent studies demonstrated the altered expression profile of long non-coding RNAs (lncRNAs) in LSCs and shed light on the role of lncRNAs in the survival, proliferation, and differentiation of LSCs. LncRNAs are transcripts longer than 200 nucleotides that are implicated in several cellular and molecular processes such as gene expression, apoptosis, and carcinogenesis. Likewise, lncRNAs have shown a prognostic marker in leukemia patients and represent novel treatment options. Herein, we review the current knowledge concerning lncRNAs' implication in the pathogenesis of LSCs and discuss their prognostic, diagnostic, and therapeutic potential.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Diferenciação Celular , Células-Tronco
3.
Clin Transl Oncol ; 25(1): 21-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35790599

RESUMO

Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Criança , Adulto Jovem , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Osteogênese , Linhagem Celular Tumoral , MicroRNAs/genética , Transdução de Sinais , Osteossarcoma/metabolismo , Neoplasias Ósseas/patologia
5.
Clin Transl Oncol ; 24(7): 1238-1249, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35239138

RESUMO

Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.


Assuntos
Lisina , Neoplasias , Apoptose , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Masculino , Metilação , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA