Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 121-124: 231-41, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917602

RESUMO

This work investigated the production of fatty acid ethyl esters (FAEEs) from soybean oil using n-hexane as solvent and two commercial lipases as catalysts, Novozym 435 and Lipozyme IM. A Taguchi experimental design was adopted considering the variables temperature (35-65 degrees C), addition of water (0-10 wt/wt%), enzyme (5-20 wt/wt%) concentration, and oil-to-ethanol molar ratio (1:3-1:10). It is shown that complete conversion in FAEE is achieved for some experimental conditions. The effects of process variables on reaction conversion and kinetics of the enzymatic reactions are presented for all experimental conditions investigated in the factorial design.


Assuntos
Álcoois/química , Ácidos Graxos/síntese química , Hexanos/química , Lipase/química , Solventes/química , Óleo de Soja/química , Ativação Enzimática , Enzimas Imobilizadas/química , Ésteres , Proteínas Fúngicas , Hidrólise , Cinética , Soluções
2.
Appl Biochem Biotechnol ; 121-124: 553-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15920262

RESUMO

This article reports experimental data on the production of fatty acid ethyl esters from refined and degummed soybean oil and castor oil using NaOH as catalyst. The variables investigated were temperature (30-70 degrees C), reaction time (1-3 h), catalyst concentration (0.5-1.5 w/wt%), and oil-to-ethanol molar ratio (1:3-1:9). The effects of process variables on the reaction conversion as well as the optimum experimental conditions are presented. The results show that conversions >95% were achieved for all systems investigated. In general, an increase in reaction temperature, reaction time, and in oil-to-ethanol molar ratio led to an enhancement in reaction conversion, whereas an opposite trend was verified with respect to catalyst concentration.


Assuntos
Óleo de Rícino/química , Etanol/química , Ácidos Graxos/síntese química , Hidróxido de Sódio/química , Óleo de Soja/química , Álcalis/química , Catálise , Técnicas de Química Combinatória , Esterificação , Ésteres , Gasolina , Concentração de Íons de Hidrogênio , Temperatura
3.
Appl Biochem Biotechnol ; 113-116: 771-80, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15054231

RESUMO

We studied the production of fatty acid ethyl esters from castor oil using n-hexane as solvent and two commercial lipases, Novozym 435 and Lipozyme IM, as catalysts. For this purpose, a Taguchi experimental design was adopted considering the following variables: temperature (35-65 degrees C), water (0-10 wt/wt%), and enzyme (5-20 wt/wt%) concentrations and oil-to-ethanol molar ratio (1:3 to 1:10). An empirical model was then built so as to assess the main and cross-variable effects on the reaction conversion and also to maximize biodiesel production for each enzyme. For the system containing Novozym 435 as catalyst the maximum conversion obtained was 81.4% at 65 degrees C, enzyme concentration of 20 wt/wt%, water concentration of 0 wt/wt%, and oil-to-ethanol molar ratio of 1:10. When the catalyst was Lipozyme IM, a conversion as high as 98% was obtained at 65 degrees C, enzyme concentration of 20 wt/wt%, water concentration of 0 wt/wt%, and oil-to-ethanol molar ratio of 1:3.


Assuntos
Biotecnologia/métodos , Óleo de Rícino/química , Química Orgânica/métodos , Álcoois/química , Catálise , Ésteres/química , Etanol , Cinética , Lipase/química , Modelos Estatísticos , Óleos de Plantas , Solventes , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA