Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 8(5): 491-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534721

RESUMO

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genética
2.
Nat Commun ; 11(1): 4572, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917907

RESUMO

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.


Assuntos
Variação Genética , Genoma de Planta , Triticum/genética , Alelos , Domesticação , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Tetraploidia
3.
Biopreserv Biobank ; 16(5): 337-349, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30325668

RESUMO

Genebanks are responsible for collecting, maintaining, characterizing, documenting, and distributing plant genetic resources for research, education, and breeding purposes. The rationale for requests of plant materials varies highly from areas of anthropology, social science, small-holder farmers, the commercial sector, rehabilitation of degraded systems, all the way to crop improvement and basic research. Matching "the right" accessions to a particular request is not always a straightforward process especially when genetic resource collections are large and the user does not already know which accession or even which species they want to study. Some requestors have limited knowledge of the crop; therefore, they do not know where to begin and thus, initiate the search by consultation with crop curators to help direct their request to the most suitable germplasm. One way to enhance the use of genebank material and aid in the selection of genetic resources is to have thoroughly cataloged agronomic, biochemical, genomic, and other traits linked to genebank accessions. In general, traits of importance to most users include genotypes that thrive under various biotic and abiotic stresses, morphological traits (color, shape, size of fruits), plant architecture, disease resistance, nutrient content, yield, and crop specific quality traits. In this review, we discuss methods for linking traits to genebank accessions, examples of linked traits, and some of the complexities involved, while reinforcing why it is critical to have well characterized accessions with clear trait data publicly available.


Assuntos
Algoritmos , Banco de Sementes , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Desenvolvimento Vegetal , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico
4.
PLoS One ; 10(7): e0132112, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176697

RESUMO

Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT's ongoing 'Seeds of Discovery' project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.


Assuntos
Agricultura/métodos , Bases de Dados Genéticas , Genes de Plantas , Variação Genética , Triticum/genética , Alelos , DNA de Plantas/análise , Genótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA