Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 327: 138457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948257

RESUMO

The development of new materials that have a high capacity to remove pollutants in water-based media is becoming increasingly important because of the serious contamination of water and the negative impact on biodiversity and public health. The presence of glyphosate in water, the most widely used herbicide worldwide, has triggered alerts owing to the collateral effects it may cause on human health. The main objective of the present study was to investigate the potential of the hybrid material MIL-53(Al)@RH for the adsorption of glyphosate in aqueous solution. The material was obtained following the methodology of MIL-53(Al) synthesis in the presence of hydrolyzed rice husk assisted by microwave. Batch adsorption experiments were carried out to evaluate the adsorbent dosage, pH0 solution effect, contact time, adsorbate concentration, and temperature effect. The results demonstrated that a maximum adsorption capacity of 296.95 mg g-1, at pH0 4 with a ratio of 0.04 g MIL-53(Al)@RH/50 mL of solution, was achieved in 30 min. The Avrami and pseudo-second order models appropriately described the adsorption kinetics and the equilibrium by Langmuir and Sips models. The enthalpy changes (ΔH°) determined propose an endothermic reaction governed by chemisorption, corroborating the kinetic and equilibrium settings. Hydrogen bonds, π*-π interactions, and complexation between the metal centers of MIL-53(Al) and the anionic groups of glyphosate were postulated to be involved as adsorption mechanisms. Finally, for practical application, MIL-53(Al)@RH was packed in a column for a fixed-bed test which revealed that the hybrid can remove glyphosate with an adsorption capacity of 76.304 mg L-1, utilizing 90% of the bed.


Assuntos
Oryza , Poluentes Químicos da Água , Purificação da Água , Humanos , Água , Poluentes Químicos da Água/química , Oryza/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Glifosato
2.
Sci Total Environ ; 855: 158865, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165910

RESUMO

Glyphosate (GLY) is the most widely used non-selective broad-spectrum herbicide worldwide under well-reported side effects on the environment and human health. That's why it's necessary to control its presence in the environment. This work describes the development of an affordable, simple, and accurate electrochemical biosensor using a pencil graphite electrode as support, a horseradish peroxidase enzyme immobilized on a polysulfone membrane doped with multi-walled carbon nanotubes. The developed electrochemical sensor was used in the determination of GLY in river and drinking water samples. Cyclic voltammetry and amperometry were used as electrochemical detection techniques for the characterization and analytical application of the developed biosensor. The working mechanism of the biosensor is based on the inhibition of the peroxidase enzyme by GLY. Under optimal experimental conditions, the biosensor showed a linear response in the concentration range of 0.1 to 10 mg L-1. The limits of detection and quantification are 0.025 ± 0.002 and 0.084 ± 0.007 mg L-1, respectively, which covers the maximum residual limit established by the EPA for drinking water (0.7 mg L-1). The proposed biosensor demonstrated high reproducibility, excellent analytical performance, repeatability, and accuracy. The sensor proved to be selective against other pesticides, organic acids, and inorganic salts. Application on real samples showed recovery rates ranging between 98.18 ± 0.11 % and 97.32 ± 0.23 %. The analytical features of the proposed biosensor make it an effective and useful tool for the detection of GLY for environmental analysis.


Assuntos
Técnicas Biossensoriais , Água Potável , Grafite , Nanotubos de Carbono , Humanos , Grafite/química , Nanotubos de Carbono/química , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Glifosato
3.
Food Chem ; 227: 166-172, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274418

RESUMO

In this work, an expeditious method based on the multi-commutated flow-analysis concept with potentiometric detection is proposed to perform determinations of the emergent contaminant perchlorate in vegetable matrices down to nanomolar concentration. To accomplish the task, a tubular shaped potentiometric sensor selective to perchlorate ion was constructed with a PVC membrane containing 12mmol/kg of the polyamine bisnaphthalimidopropyl-4,4'-diaminodiphenylmethane and 2-nitrophenyl phenyl ether 68% (w/w) as plasticizer casted on a conductive epoxy resin. Under optimal flow conditions, the sensor responded linearly in the concentration range of 6.3×10-7-1.0×10-3mol/L perchlorate. In order to extend the determinations to lower concentrations (4.6(±1.3)×10-10mol/L perchlorate), a column packed with 70mg of sodium 2,5,8,11,14-pentaoxa-1-silacyclotetradecane-polymer was coupled to the flow-system thus enabling prior pre-concentration of the perchlorate. The proposed procedure provides a simpler alternative for the determination of perchlorate in foods, nowadays only allowed by sophisticated and expensive equipment and laborious methods.


Assuntos
Naftalenos/análise , Nitrocompostos/análise , Percloratos/análise , Éteres Fenílicos/análise , Poliaminas/análise , Potenciometria/métodos , Verduras/química , Compostos de Anilina , Naftalenos/química , Nitrocompostos/química , Éteres Fenílicos/química , Plastificantes , Poliaminas/química , Cloreto de Polivinila , Urinálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA