Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 70(8): 877-889, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34086061

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, known as coronavirus disease 2019 (COVID-19) causes cytokine release syndrome (CRS), leading to acute respiratory distress syndrome (ARDS), acute kidney and cardiac injury, liver dysfunction, and multiorgan failure. Although several studies have discussed the role of 5-lipoxygenase (5-LOX) in viral infections, such as influenzae and SARS, it remains unexplored in the pathophysiology of COVID-19. 5-LOX acts on free arachidonic acid (AA) to form proinflammatory leukotrienes (LTs). Of note, numerous cells involved with COVID-19 (e.g., inflammatory and smooth muscle cells, platelets, and vascular endothelium) widely express leukotriene receptors. Moreover, 5-LOX metabolites induce the release of cytokines (e.g., tumour necrosis factor-α [TNF-α], interleukin-1α [IL-1α], and interleukin-1ß [IL-1ß]) and express tissue factor on cell membranes and activate plasmin. Since macrophages, monocytes, neutrophils, and eosinophils can express lipoxygenases, activation of 5-LOX and the subsequent release of LTs may contribute to the severity of COVID-19. This review sheds light on the potential implications of 5-LOX in SARS-CoV-2-mediated infection and the anticipated therapeutic role of 5-LOX inhibitors.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Tratamento Farmacológico da COVID-19 , COVID-19/enzimologia , COVID-19/fisiopatologia , Interleucinas/metabolismo , Inibidores de Lipoxigenase/farmacologia , SARS-CoV-2 , Animais , Ácido Araquidônico/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação , Leucotrienos/metabolismo , Resultado do Tratamento , Viroses/tratamento farmacológico
2.
Braz J Microbiol ; 52(2): 597-606, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33483896

RESUMO

BACKGROUND AND AIM: Extensively drug-resistant (XDR) Klebsiella pneumoniae represent a major threat in intensive care units. The aim of the current study was to formulate a niosomal form of azithromycin (AZM) and to evaluate its in vitro effect on XDR K. pneumoniae as a single agent or in combination with levofloxacin. MATERIAL AND METHODS: Forty XDR K. pneumoniae isolates (23 colistin-sensitive and 17 colistin-resistant) were included in the study. Formulation and characterization of AZM niosomes were performed. The in vitro effect of AZM solution/niosomes alone and in combination (with levofloxacin) was investigated using the checkerboard assay, confirmed with time-kill assay and post-antibiotic effect (PAE). RESULTS: The AZM niosome mean minimal inhibitory concentration (MIC) (187.4 ± 209.1 µg/mL) was significantly lower than that of the AZM solution (342.5 ± 343.4 µg/mL). AZM niosomes/levofloxacin revealed a 40% synergistic effect compared to 20% with AZM solution/levofloxacin. No antagonistic effect was detected. The mean MIC values of both AZM niosomes and AZM solution were lower in the colistin-resistant group than in the colistin-sensitive group. The mean PAE time of AZM niosomes (2.3 ± 1.09 h) was statistically significantly longer than that of the AZM solution (1.37 ± 0.5 h) (p = 0.023). CONCLUSION: AZM niosomes were proved to be more effective than AZM solution against XDR K. pneumoniae, even colistin-resistant isolates.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Levofloxacino/farmacologia , Antibacterianos/química , Azitromicina/química , Composição de Medicamentos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipossomos/química , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA