Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947130

RESUMO

The biosynthesis of oxide semiconductor nanoparticles (NPs) using materials found in nature opens a wide field of study focused on sustainability and environmental protection. Biosynthesized NPs have the capacity to eliminate organic dyes, which pollute water and cause severe damage to the environment. In the present work, the green synthesis of zinc oxide (ZnO) NPs was carried out using Capsicum annuum var. Anaheim extract. The photocatalytic elimination of methylene blue (MB), methyl orange (MO), and Rhodamine B (RhB) in UV radiation was evaluated. The materials were characterized by scanning and transmission electron microscopy (SEM and TEM) and SEM-coupled energy dispersive spectroscopy (EDS), attenuated total reflectance-infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Photoluminescence (PL), and ultraviolet-visible spectroscopy (UV-Vis). The TEM analysis showed the NPs have an average size of 40 nm and quasi-spherical shape. ATR-IR showed the ZnO NPs contained functional groups from the extract. The analysis through XRD indicated that the NPs have a hexagonal zincite crystal structure with an average crystallite size of approximately 17 nm. The photoluminescence spectrum (PL) presented an emission band at 402 nm. From the UV-Vis spectra and TAUC model, the band-gap value was found to be 2.93 eV. Finally, the photocatalytic assessment proved the ZnO NPs achieved 100% elimination of MB at 60 min exposure, and 85 and 92% degradation of MO and RhB, respectively, at 180 min. This indicates that ZnO NPs, in addition to using a friendly method for their synthesis, manage to have excellent photocatalytic activity in the degradation of various organic pollutants.

2.
J Med Syst ; 40(6): 144, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27118010

RESUMO

Wellness is a term often used to talk about optimal health as "dynamic balance of physical, emotional, social, spiritual, and intellectual health." While healthcare is a term about care offered to patients for improving their health. We use both terms, as well as the Business Model Canvas (BMC) methodology, to design a digital ecosystem model for healthcare and wellness called DE4HW; the model considers economic, technological, and legal asymmetries, which are present on e-services beyond geographical regions. BMC methodology was embedded into the global project strategy called: IBOT (Initiate, Build, Operate and Transfer); it is a methodology to establish a functional, integrated national telemedicine network and virtual education network; of which we took its phases rationale. The results in this work illustrate the design of DE4HW model, into the first phase of IBOT, enriched with the BMC, which enables us to define actors, their interactions, rules and protocols, in order to build DE4HW, while IBOT strategy manages the project goal, up to the transfer phase, where an integral service platform of healthcare and wellness is turned over to stakeholders.


Assuntos
Sistemas Computacionais , Atenção à Saúde , Modelos Organizacionais , Satisfação Pessoal , Telemedicina , Humanos , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA