RESUMO
The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln γ1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln γ1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln γ1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.
Assuntos
Laminina/metabolismo , Neuritos/fisiologia , Proteínas PrPC/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Animais , Benzoatos/farmacologia , Cálcio/metabolismo , Células Cultivadas , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Células HEK293 , Humanos , Immunoblotting , Laminina/genética , Laminina/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuritos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas PrPC/genética , Ligação Proteica , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/genética , Fosfolipases Tipo C/metabolismoRESUMO
The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrP(C)) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrP(C) trafficking and tested whether this process controls PrP(C)-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrP(C), induced PrP(C) endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrP(C); however, heterologous expression of PrP(C) reconstituted both PKA and ERK1/2 activation. In contrast, a PrP(C) mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrP(C) endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.
Assuntos
Encéfalo/metabolismo , Endocitose/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico/metabolismo , Neurônios/metabolismo , Proteínas PrPC/metabolismo , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Ativação Enzimática/fisiologia , Proteínas de Choque Térmico/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Técnicas de Cultura de Órgãos , Proteínas PrPC/genética , Transporte Proteico/fisiologiaRESUMO
The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP(C)), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP(C) and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP(C) by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.