Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 105: 110048, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546367

RESUMO

A simple, inexpensive, highly sensitive, selective, and novel electrochemical method was developed for determination of the Bisphenol A in samples of tap water, blood serum, and urine using a bentonite-modified carbon paste electrode. The graphite, bentonite and the working electrodes (without and chemically modified) were characterized by scanning electron microscopy, infrared absorption spectroscopy, and X-ray diffraction. The electrodes were electrochemically characterized using cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The studied electrochemical variables were: electrode area, standard heterogeneous rate constant, charge transfer coefficient and double-layer capacitance. The bentonite as a sensor modifier had a strong influence on these variables. For the development of the methodology to quantify Bisphenol A, the instrumental parameters (frequency, amplitude, and step potential) and experimental parameters (pH, bentonite quantity) were optimized. The analytical curve to Bisphenol showed a linear response of the oxidation peak current intensity vs. the concentration in the range of 6.8 × 10-10 to 1.5 × 10-8 mol mL-1, with a limit of detection (LOD) of 2.11 × 10-11 mol mL-1 and limit of quantification (LOQ) of 7.04 × 10-11 mol mL-1. Recovery experiments were performed by adding known amounts of Bisphenol A in tap water, blood serum, and urine samples. Recovery rates using the standard addition method were in the range of 97.8-101.8%. The results demonstrated the method feasibility for quantifying Bisphenol A in these samples.


Assuntos
Bentonita/química , Compostos Benzidrílicos/análise , Técnicas Eletroquímicas , Fenóis/análise , Eletrodos , Grafite/química , Limite de Detecção , Oxirredução
2.
Sci Rep ; 6: 37799, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886272

RESUMO

Tooth-coloured plastic dental fillings secured by adhesives to tooth structures are widely used to fix decayed teeth. Whereas laboratory tests demonstrate rapid deterioration of the ability of the adhesives to stick to dentine, clinical studies show that these fillings are relatively durable. This discrepancy suggests that the parameters used for simulating bond degradation in the laboratory setting do not correlate well with clinical outcomes. The present study examined the long-term tensile bond strength of resin composite fillings performed in real life and under different laboratory-simulated bonding conditions to identify parameters that may be used to forecast the durability of adhesive bonds created in dentine. Fillings placed in vivo were subjected to different periods of intraoral function. In vitro specimens were bonded based on whether simulated pulpal pressure (SPP) or thermomechanical cycling was implemented, and how long the completed fillings were stored in water. Thermomechanical cycling used in combination with long-term water ageing are useful in forecasting the decline in strength of resin-dentine bonds created in vivo. These parameters should be adopted for future evaluations. Conversely, the use of SPP does not appear to be a significant parameter in the simulation of long-term clinical deterioration of bond integrity.


Assuntos
Colagem Dentária , Dentina/metabolismo , Laboratórios , Adesivos Dentinários , Previsões , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA