Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 74: 327-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25546245

RESUMO

Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding.


Assuntos
Naftalenossulfonato de Anilina/farmacologia , Hemoglobinas/química , Desnaturação Proteica/efeitos dos fármacos , Animais , Hidrodinâmica , Concentração de Íons de Hidrogênio , Oligoquetos/química , Oxigênio/química , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
2.
Biochim Biophys Acta ; 1840(10): 3145-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24954307

RESUMO

BACKGROUND: Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. RESULTS: In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. CONCLUSION: Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. GENERAL SIGNIFICANCE: To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Multimerização Proteica/efeitos dos fármacos , Triterpenos/farmacologia , Antineoplásicos/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Triterpenos Pentacíclicos , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA