Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838467

RESUMO

Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.

2.
World J Microbiol Biotechnol ; 37(12): 211, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729659

RESUMO

A plethora of bacteria-fungal interactions occur on the extended fungal hyphae network in soil. The mycosphere of saprophytic fungi can serve as a bacterial niche boosting their survival, dispersion, and activity. Such ecological concepts can be converted to bioproducts for sustainable agriculture. Accordingly, we tested the hypothesis that the well-characterised beneficial bacterium Serratia marcescens UENF-22GI can enhance plant growth-promoting properties when combined with Trichoderma longibrachiatum UENF-F476. The cultural and cell interactions demonstrated S. marcescens and T. longibrachiatum mutual compatibility. Bacteria cells were able to attach, forming aggregates to biofilms and migrating through the fungal hyphae network. Long-distance bacterial migration through growing hyphae was confirmed using a two-compartment Petri dishes assay. Fungal inoculation increased the bacteria survival rates into the vermicompost substrate over the experimental time. Also, in vitro indolic compound, phosphorus, and zinc solubilisation bacteria activities increased in the presence of the fungus. In line with the ecophysiological bacteria fitness, the bacterium-fungal combination boosted tomato and papaya plantlet growth when applied into the plant substrate under nursery conditions. Mutualistic interaction between mycosphere-colonizing bacterium S. marcescens UENF-22GI and the saprotrophic fungi T. longibrachiatum UENF-F467 increased the ecological fitness of the bacteria alongside with beneficial potential for plant growth. A proper combination and delivery of mutual compatible beneficial bacteria-fungal represent an open avenue for microbial-based products for the biological enrichment of plant substrates in agricultural systems.


Assuntos
Carica/crescimento & desenvolvimento , Hypocreales/fisiologia , Serratia marcescens/fisiologia , Microbiologia do Solo , Solanum lycopersicum/crescimento & desenvolvimento , Biofilmes , Carica/microbiologia , Hifas/fisiologia , Solanum lycopersicum/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA