Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(3): e0008822, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684127

RESUMO

Species Distribution Modelling (SDM) determines habitat suitability of a species across geographic areas using macro-climatic variables; however, micro-habitats can buffer or exacerbate the influence of macro-climatic variables, requiring links between physiology and species persistence. Experimental approaches linking species physiology to micro-climate are complex, time consuming and expensive. E.g., what combination of exposure time and temperature is important for a species thermal tolerance is difficult to judge a priori. We tackled this problem using an active learning approach that utilized machine learning methods to guide thermal tolerance experimental design for three kissing-bug species: Triatoma infestans, Rhodnius prolixus, and Panstrongylus megistus (Hemiptera: Reduviidae: Triatominae), vectors of the parasite causing Chagas disease. As with other pathogen vectors, triatomines are well known to utilize micro-habitats and the associated shift in microclimate to enhance survival. Using a limited literature-collected dataset, our approach showed that temperature followed by exposure time were the strongest predictors of mortality; species played a minor role, and life stage was the least important. Further, we identified complex but biologically plausible nonlinear interactions between temperature and exposure time in shaping mortality, together setting the potential thermal limits of triatomines. The results from this data led to the design of new experiments with laboratory results that produced novel insights of the effects of temperature and exposure for the triatomines. These results, in turn, can be used to better model micro-climatic envelope for the species. Here we demonstrate the power of an active learning approach to explore experimental space to design laboratory studies testing species thermal limits. Our analytical pipeline can be easily adapted to other systems and we provide code to allow practitioners to perform similar analyses. Not only does our approach have the potential to save time and money: it can also increase our understanding of the links between species physiology and climate, a topic of increasing ecological importance.


Assuntos
Insetos Vetores/fisiologia , Aprendizado de Máquina , Microclima , Panstrongylus/fisiologia , Rhodnius/fisiologia , Triatominae/fisiologia , Animais , Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Modelos Biológicos , Panstrongylus/parasitologia , Rhodnius/parasitologia , Triatominae/parasitologia , Trypanosoma cruzi/fisiologia
2.
Molecules ; 25(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414128

RESUMO

Synthetic insecticides have been used for a long time as one of the most effective tools for insect pest control. However, the re-emergence of insect pests and their fast development of resistance, as has occurred for pyrethroid-resistant bed bugs Cimex lectularius L., make it necessary to develop new and safe strategies for effective pest control. This has fostered the research on new eco-sustainable formulations based on essential oils, which allows reducing the impact associated with the intensive use of synthetic insecticides on the environment and their effects on human health. This research explores the stability of water/eugenol/ethanol surfactantless emulsions loaded with imidacloprid (0.003 wt%), and their toxicity against a resistant bed bug strain. The results have shown that these emulsions enable the solubilization of a poorly water-soluble drug, such as the imidacloprid, without any significant modification of their stability. Furthermore, the application of the obtained formulations against the pyrethroid-resistant bed bug results in mortality in the 50-85% range upon topical and spray applications, with the increase of the eugenol content enhancing the effectiveness of the formulations. It may be expected that the ternary water/eugenol/ethanol mixtures could be further developed in the preparation of ready to use formulations, enabling the dispersion of insecticides for pest control.


Assuntos
Percevejos-de-Cama/crescimento & desenvolvimento , Eugenol , Controle de Insetos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas , Neonicotinoides , Nitrocompostos , Animais , Emulsões , Eugenol/química , Eugenol/farmacologia , Inseticidas/química , Inseticidas/farmacologia , Neonicotinoides/química , Neonicotinoides/farmacologia , Nitrocompostos/química , Nitrocompostos/farmacologia
3.
Parasite Epidemiol Control ; 7: e00110, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31236488

RESUMO

In Argentina, Leishmania infantum (syn. L. chagasi) is the etiologic agent of human visceral leishmaniosis (HVL), and Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) is the main vector. The objective of this study was to evaluate the effectiveness and residual effect of two commercial insecticide formulations, one with permethrin and pyriproxyfen as active ingredients (Dragon Max®) and the other with only permethrin (Flop®) for the control of sandflies. Both formulations were applied in chicken coops and other surroundings structures of the peridomicile of urban houses in Clorinda, Formosa (Argentina). Entomological monitoring was carried out weekly for 44 weeks after the intervention. The results showed great effectiveness and residual effect up to 21 weeks post-intervention for Dragon Max®. This result could be explained by the excellent larvicidal activity of the Insect Growth Regulator (IGR) pyriproxyfen against the immature forms of phlebotomines and by the delay on the restoration of the natural threshold of the vector population in treated sites.

4.
J Med Entomol ; 55(5): 1098-1104, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29873741

RESUMO

An essential strategy to deal with mosquito-borne diseases is the control of larvae in their development sites. The mosquitoes Anopheles pseudopunctipennis (Theobald) (Diptera: Culicidae), a malaria vector, and Aedes aegypti (L.) (Diptera: Culicidae), vector of dengue, Zika, yellow fever, and chikungunya viruses, breed in very different habitats. Insecticide treatments of mosquito larvae focus mainly on their lethal effects. However, insecticide degradation or the poor dosage of larvicides will invariably lead to the sublethal exposure of a target (and nontarget) species, the nonlethal effects of these compounds may have important effects on vital insect activities, and therefore their evaluation is necessary. In this study, we assessed the survival and swimming behavior of larvae of Ae. aegypti and An. pseudopunctipennis exposed to increasing concentrations of three larvicides. We found that Ae. aegypti, was more sensitive to the larvicides than An. pseudopunctipennis, we also observed an overall decrease in the movement of those larvae of both species, which survive the treatments. This decrease might have ecological relevance in their natural habitats, increasing the chance to be predated and decreasing their ability to obtain food. Finally, this information will be valuable to assist authorities to make decisions in the implementation of further control programs.


Assuntos
Aedes , Anopheles , Óleo de Eucalipto , Inseticidas , Larva , Animais , Permetrina , Natação , Temefós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA