Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15755, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977809

RESUMO

Guava (Psidium guajava L.) is a semi-domesticated fruit tree of moderate importance in the Neotropics, utilized for millennia due to its nutritional and medicinal benefits, but its origin of domestication remains unknown. In this study, we examine genetic diversity and population structure in 215 plants from 11 countries in Mesoamerica, the Andes, and Amazonia using 25 nuclear microsatellite loci to propose an origin of domestication. Genetic analyses reveal one gene pool in Mesoamerica (Mexico) and four in South America (Brazilian Amazonia, Peruvian Amazonia and Andes, and Colombia), indicating greater differentiation among localities, possibly due to isolation between guava populations, particularly in the Amazonian and Andean regions. Moreover, Mesoamerican populations show high genetic diversity, with moderate genetic structure due to gene flow from northern South American populations. Dispersal scenarios suggest that Brazilian Amazonia is the probable origin of guava domestication, spreading from there to the Peruvian Andes, northern South America, Central America, and Mexico. These findings present the first evidence of guava domestication in the Americas, contributing to a deeper understanding of its evolutionary history.


Assuntos
Domesticação , Variação Genética , Repetições de Microssatélites , Psidium , Psidium/genética , Repetições de Microssatélites/genética , América do Sul , Fluxo Gênico , Genética Populacional , Brasil
2.
Mol Biol Rep ; 50(4): 3547-3555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36787057

RESUMO

BACKGROUND: The genus Ternstroemia is associated with the vulnerable tropical montane cloud forest in Mexico and with other relevant vegetation types worldwide. It contains threatened and pharmacologically important species and has taxonomic issues regarding its species limits. This study describes 38 microsatellite markers generated using a genomic-based approach. METHODS AND RESULTS: We tested 23 of these markers in a natural population of Ternstroemia lineata. These markers are highly polymorphic (all loci polymorphic with 3-14 alleles per locus and expected heterozygosity between 0.202 and 0.908), most of them (19 out of 23) are in Hardy-Weinberg Equilibrium and free of null alleles (18 out of 23). Also we found no evidence of linkage among them. Finally, we tested the transferability to six other American species of Ternstroemia, two other Pentaphylacaceae species, and four species from different families within the order Ericales. CONCLUSIONS: These molecular resources are promising tools to investigate genetic diversity loss and as barcodes for ethnopharmacological applications and species delimitation in the family Pentaphylacaceae and some Ericales, among other applications.


Assuntos
Ericales , Humanos , Ericales/genética , Genoma , Genômica , Heterozigoto , Repetições de Microssatélites/genética , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Loci Gênicos/genética
3.
Front Plant Sci ; 12: 714763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650576

RESUMO

Guava (Psidium guajava L., Myrtaceae) is a Neotropical fruit that is widely consumed around the world. However, its evolutionary history and domestication process are unknown. Here we examine available ecological, taxonomic, genetic, archeological, and historical evidence about guava. Guava needs full sunlight, warm temperatures, and well-distributed rainfall throughout the year to grow, but tolerates drought. Zoochory and anthropochory are the main forms of dispersal. Guava's phylogenetic relationships with other species of the genus Psidium are unclear. A group of six species that share several morphological characteristics are tentatively accepted as the Psidium guajava complex. DNA analyses are limited to the characterization of crop genetic diversity within localities and do not account for possible evolutionary and domestication scenarios. A significant amount of archeological information exists, with a greater number and older records in South America than in Mesoamerica, where there are also numerous historical records. From this information, we propose that: (1) the guava ancestor may have originated during the Middle or Late Miocene, and the savannas and semi-deciduous forests of South America formed during the Late Pleistocene would have been the most appropriate ecosystems for its growth, (2) the megafauna were important dispersers for guava, (3) dispersal by humans during the Holocene expanded guava's geographic range, including to the southwestern Amazonian lowlands, (4) where its domestication may have started, and (5) with the European conquest of the Neotropics, accompanied by their domestic animals, new contact routes between previously remote guava populations were established. These proposals could direct future research on the evolutionary and domestication process of guava.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA