Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 35(30): 10866-77, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224868

RESUMO

What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the perspective of dynamical systems theory. We argue that the brain, as a dynamical system, is self-regulated at the boundary between stable and unstable regimes, allowing it in particular to maintain high susceptibility to stimuli. To test this hypothesis, we performed stability analysis of high-density electrocorticography recordings covering an entire cerebral hemisphere in monkeys during reversible loss of consciousness. We show that, during loss of consciousness, the number of eigenmodes at the edge of instability decreases smoothly, independently of the type of anesthetic and specific features of brain activity. The eigenmodes drift back toward the unstable line during recovery of consciousness. Furthermore, we show that stability is an emergent phenomenon dependent on the correlations among activity in different cortical regions rather than signals taken in isolation. These findings support the conclusion that dynamics at the edge of instability are essential for maintaining consciousness and provide a novel and principled measure that distinguishes between the conscious and the unconscious brain. SIGNIFICANCE STATEMENT: What distinguishes brain activity during consciousness from that observed during unconsciousness? Answering this question has proven difficult because neither consciousness nor lack thereof have universal signatures in terms of most specific features of brain activity. For instance, different anesthetics induce different patterns of brain activity. We demonstrate that loss of consciousness is universally and reliably associated with stabilization of cortical dynamics regardless of the specific activity characteristics. To give an analogy, our analysis suggests that loss of consciousness is akin to depressing the damper pedal on the piano, which makes the sounds dissipate quicker regardless of the specific melody being played. This approach may prove useful in detecting consciousness on the basis of brain activity under anesthesia and other settings.


Assuntos
Córtex Cerebral/fisiologia , Estado de Consciência/fisiologia , Inconsciência , Anestésicos/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Eletroencefalografia , Haplorrinos , Masculino , Processamento de Sinais Assistido por Computador
2.
PLoS One ; 8(6): e67814, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818988

RESUMO

The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.


Assuntos
Canários/fisiologia , Córtex Motor/fisiologia , Vias Neurais/fisiologia , Temperatura , Vocalização Animal/fisiologia , Algoritmos , Animais , Encéfalo/fisiologia , Masculino , Modelos Neurológicos , Prosencéfalo/fisiologia , Respiração , Fatores de Tempo
3.
Chaos ; 21(2): 023102, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21721744

RESUMO

We investigate the behavior of the order parameter describing the collective dynamics of a large set of driven, globally coupled excitable units. We derive conditions on the parameters of the system that allow to bound the degree of synchrony of its solutions. We describe a regime where time dependent nonsynchronous dynamics occurs and, yet, the average activity displays low dimensional, temporally complex behavior.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 041929, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518278

RESUMO

During song production, oscine birds produce large air sac pressure pulses. During those pulses, energy is transferred to labia located at the juncture between the bronchii and the trachea, inducing the high frequency labial oscillations which are responsible for airflow modulations, i.e., the uttered sound. In order to generate diverse syllables, canaries (Serinus canaria) use a set of air sac pressure patterns with characteristic shapes. In this work we show that these different shapes can be approximated by the subharmonic solutions of a forced normal form. This simple model is built from identifying dynamical elements which allow to reproduce the shape of the pressure pattern corresponding to one syllable type. Remarkably, integrating that simple model for other parameters allows to recover the other pressure patterns used during song. Interpreting the diversity of these physiological gestures as subharmonic solutions of a simple nonlinear system allows us to account simultaneously for their morphological features as well as for the syllabic timing and suggests a strategy for the generation of complex motor patterns.


Assuntos
Pressão do Ar , Canários/fisiologia , Modelos Biológicos , Som , Vocalização Animal , Sacos Aéreos/fisiologia , Algoritmos , Animais , Simulação por Computador , Masculino , Dinâmica não Linear , Pressão , Espectrografia do Som , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA