Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274675

RESUMO

Hard anodizing is used to improve the anodic films' mechanical qualities and aluminum alloys' corrosion resistance. Applications for anodic oxide coatings on aluminum alloys include the space environment. In this work, the aluminum alloys 2024-T3 (Al-Cu), 6061-T6 (Al-Mg-Si), and 7075-T6 (Al-Zn) were prepared by hard anodizing electrochemical treatment using citric and sulfur acid baths at different concentrations. The aim of the work is to observe the effect of citric acid on the microstructure of the substrate, the mechanical properties, the corrosion resistance, and the morphology of the hard anodic layers. Hard anodizing was performed on three different aluminum alloys using three citric-sulfuric acid mixtures for 60 min and using current densities of 3.0 and 4.5 A/dm2. Vickers microhardness (HV) measurements and scanning electron microscopy (SEM) were utilized to determine the mechanical characteristics and microstructure of the hard anodizing material, and electrochemical techniques to understand the corrosion kinetics. The result indicates that the aluminum alloy 6061-T6 (Al-Mg-Si) has the maximum hard-coat thickness and hardness. The oxidation of Zn and Mg during the anodizing process found in the 7075-T6 (Al-Zn) alloy promotes oxide formation. Because of the high copper concentration, the oxide layer that forms on the 2024-T6 (Al-Cu) Al alloy has the lowest thickness, hardness, and corrosion resistance. Citric and sulfuric acid solutions can be used to provide hard anodizing in a variety of aluminum alloys that have corrosion resistance and mechanical qualities on par with or better than traditional sulfuric acid anodizing.

2.
Materials (Basel) ; 17(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39203191

RESUMO

Corrosion deterioration of materials is a major problem affecting economic, safety, and logistical issues, especially in the aeronautical sector. Detecting the correct corrosion type in metal alloys is very important to know how to mitigate the corrosion problem. Electrochemical noise (EN) is a corrosion technique used to characterize the behavior of different alloys and determine the type of corrosion in a system. The objective of this research is to characterize by EN technique different aeronautical alloys (Al, Ti, steels, and superalloys) using different analysis methods such as time domain (visual analysis, statistical), frequency domain (power spectral density (PSD)), and frequency-time domain (wavelet decomposition, Hilbert Huang analysis, and recurrence plots (RP)) related to the corrosion process. Optical microscopy (OM) is used to observe the surface of the tested samples. The alloys were exposed to 3.5 wt.% NaCl and H2SO4 solutions at room temperature. The results indicate that HHT and recurrence plots are the best options for determining the corrosion type compared with the other methods due to their ability to analyze dynamic and chaotic systems, such as corrosion. Corrosion processes such as passivation and localized corrosion can be differentiated when analyzed using HHT and RP methods when a passive system presents values of determinism between 0.5 and 0.8. Also, to differentiate the passive system from the localized system, it is necessary to see the recurrence plot due to the similarity of the determinism value. Noise impedance (Zn) is one of the best options for determining the corrosion kinetics of one system, showing that Ti CP2 and Ti-6Al-4V presented 742,824 and 939,575 Ω·cm2, while Rn presented 271,851 and 325,751 Ω·cm2, being the highest when exposed to H2SO4.

3.
Materials (Basel) ; 17(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39203238

RESUMO

This work covers the formation of a passive state for two different alloys used in the aeronautical industry. The aim of this study is to investigate the effectiveness of passivation treatments on 17-7PH and 410 SS (stainless steel) samples, specifically when performed with citric and nitric acid solutions at 49 °C using an immersion time of 90 min and subsequent exposure in 3.5 wt.% NaCl solution. Employing the cyclic potentiodynamic polarization (CPP) technique, the corrosion properties of the passivated material were evaluated according to the ASTM G65-11 standard. A microstructural analysis was performed using scanning electron microscopy (SEM). The passivated layer was characterized via X-ray photoelectron spectroscopy. In the results, the CPP curves showed positive hysteresis, indicating pitting localized corrosion, and 17-7PH steel passivated at 49 °C for 90 min in citric acid exhibited lower corrosion rate values equivalent to ×10-3 mm/year.

4.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770197

RESUMO

New manufacturing processes for metal parts such as additive manufacturing (AM) provide a technological development for the aeronautical and aerospace industries, since these AM processes are a means to reduce the weight of the parts, which generate cost savings. AM techniques such as Laser Powder Bed Fusions (LPBF) and Electron Beam Fusion (EBM), provided an improvement in mechanical properties, corrosion resistance, and thermal stability at temperatures below 400 °C, in comparison to conventional methods. This research aimed to study the oxidation kinetics of Ti-6Al-4V alloys by conventional and Electron Beam Additive Manufacturing. The thermogravimetric analysis was performed at temperatures of 600 °C, 800 °C, and 900 °C, having a heating rate of 25 °C/min and oxidation time of 24 h. The microstructural analysis was carried out by thermogravimetric analysis. Thickness and morphology of oxide layers were analyzed by field emission scanning electron microscope, phase identification (before and after the oxidation process) was realized by X-ray diffraction at room temperature and hardness measurements were made in cross section. Results indicated that the oxidation kinetics of Ti-6Al-4V alloys fabricated by EBM was similar to conventional processing and obeyed a parabolic or quasi-parabolic kinetics. The samples oxidized at 600 °C for 24 h presented the lowest hardness values (from 350 to 470 HV). At oxidation temperatures of 800 and 900 °C, however, highest hardness values (from 870 close to the alpha-case interface up to 300 HV in base metal) were found on the surface and gradually decreased towards the center of the base alloy. This may be explained by different microstructures presented in the manufacturing processes.

5.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143713

RESUMO

In the aeronautical industry, Al-Cu alloys are used as a structural material in the manufacturing of commercial aircraft due to their high mechanical properties and low density. One of the main issues with these Al-Cu alloy systems is their low corrosion resistance in aggressive substances; as a result, Al-Cu alloys are electrochemically treated by anodizing processes to increase their corrosion resistance. Hard anodizing realized on AA2024 was performed in citric and sulfuric acid solutions for 60 min with constant stirring using current densities 3 and 4.5 A/dm2. After anodizing, a 60 min sealing procedure in water at 95 °C was performed. Scanning electron microscopy (SEM) and Vickers microhardness (HV) measurements were used to characterize the microstructure and mechanical properties of the hard anodizing material. Electrochemical corrosion was carried out using cyclic potentiodynamic polarization curves (CPP) and electrochemical impedance spectroscopy (EIS) in a 3.5 wt. % NaCl solution. The results indicate that the corrosion resistance of Al-Cu alloys in citric acid solutions with a current density 4.5 A/dm2 was the best, with corrosion current densities of 2 × 10-8 and 2 × 10-9 A/cm2. Citric acid-anodized samples had a higher corrosion resistance than un-anodized materials, making citric acid a viable alternative for fabricating hard-anodized Al-Cu alloys.

6.
Materials (Basel) ; 14(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640190

RESUMO

The aim of this work was to evaluate the corrosion behavior of the AA6061 and AlSi10Mg alloys produced by extruded and additive manufacturing (selective laser melting, SLM). Alloys were immersed in two electrolytes in H2O and 3.5 wt. % NaCl solutions at room temperature and their corrosion behavior was studied by electrochemical noise technique (EN). Three different methods filtered EN signals, and the statistical analysis was employed to obtain Rn, the localization index (LI), Kurtosis, skew, and the potential spectral density analysis (PSD). The Energy Dispersion Plots (EDP) of wavelets method was employed to determine the type of corrosion and the Hilbert-Huang Transform (HHT), analyzing the Hilbert Spectra. The result indicated that the amplitude of the transients in the time series in potential and current is greater in the AlSi10Mg alloy manufactured by additive manufacturing. The amplitude of the transients decreases in both alloys (AA6061 and AlSi10Mg) as time increases.

7.
Materials (Basel) ; 14(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067198

RESUMO

Corrosion of steel reinforcement is the major factor that limits the durability and serviceability performance of reinforced concrete structures. Impressed current cathodic protection (ICCP) is a widely used method to protect steel reinforcements against corrosion. This research aimed to study the effect of cathodic protection on reinforced concrete with fly ash using electrochemical noise (EN). Two types of reinforced concrete mixtures were manufactured; 100% Ordinary Portland Cement (OCP) and replacing 15% of cement using fly ash (OCPFA). The specimens were under-designed protected conditions (-1000 ≤ E ≤ -850 mV vs. Ag/AgCl) and cathodic overprotection (E < -1000 mV vs. Ag/AgCl) by impressed current, and specimens concrete were immersed in a 3.5 wt.% sodium chloride (NaCl) Solution. The analysis of electrochemical noise-time series showed that the mixtures microstructure influenced the corrosion process. Transients of uniform corrosion were observed in the specimens elaborated with (OPC), unlike those elaborated with (OPCFA). This phenomenon marked the difference in the concrete matrix's hydration products, preventing Cl- ions flow and showing passive current and potential transients in most specimens.

9.
Materials (Basel) ; 13(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967071

RESUMO

The titanium alloy, Ti6Al4V, is used in dentistry for dental implants because of its excellent resistance to corrosion and its high biocompatibility. However, periimplantitis is considered the main reason for treatment failure. The Ti6Al4V alloy was used to study the corrosion behavior for dental implant applications, using an experimental arrangement of three electrodes with the bacteria Streptococcus gordonii and Fusobacterium nucleatum, in addition to Ringer's lactate as electrolytes, at 37 °C and a pH of 5.6. Their electrochemical behavior was studied by open circuit potential (OCP) and cyclic potentiodynamic polarization (CPP) according to ASTM G3-14 and ASTM G61-11, respectively. Scanning electron microscopy (SEM) was employed to determine the morphology of the alloy studied. An experimental model, in situ, was established with the bacteria present in an oral environment to understand the electrochemical behavior of the alloy used in dental implants. The greatest corrosion in Ti6Al4V alloy was produced by the medium that contained the bacterium Streptococcus gordonii, which is considered a primary colonizer. In addition, the Ti6Al4V alloy presented uniform corrosion in the three solutions at the different exposure times showing a negative hysteresis in CPP.

10.
Materials (Basel) ; 13(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726900

RESUMO

The selection of materials for repairs of reinforced concrete structures is a serious concern. They are chosen for the mechanical capacity that the repair mortar achieves. However, several important characteristics have been left aside, such as the adhesion of the repair mortar with the concrete substrate, the electrical resistivity and-hugely important-the protection against corrosion that the repair material can provide to the reinforcing steel. The aim of this work was to study the corrosion behavior of AISI 1018 carbon steel (CS) in mortars manufactured with alkaline cements, engineered cementitious composites (ECC), and supplementary cementitious materials (SCM). Two types of ordinary Portland cement (OPC) 30R and 40R were used. The constituent materials for the mortars with ECC mixture mortars they use OPC 40R, class F fly ash (FA), silica fume (SF) and polypropylene (PP) fibers. The sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) were used as activating agents in alkali activated cements. The reinforced specimens were immersed in two different electrolytes, exposed to a 3.5 wt % of NaCl and Na2SO4 solutions, for 12 months and their electrochemical behavior was studied by half-cell potential (Ecorr) and linear polarization resistance (LPR) according to ASTM C876-15 and ASTM G59-97, respectively. The results obtained indicated that, the mortar they have the best performance and durability, is the conventional MCXF mortar, with OPC 30R and addition of 1% polypropylene PP fiber improves the behavior against the attack of chlorides and sulfates.

11.
Materials (Basel) ; 13(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599879

RESUMO

Increasingly stringent environmental regulations in different sectors of industry, especially the aeronautical sector, suggest the need for more investigations regarding the effect of environmentally friendly corrosion protective processes. Passivation is a finishing process that makes stainless steels more rust resistant, removing free iron from the steel surface resulting from machining operations. This results in the formation of a protective oxide layer that is less likely to react with the environment and cause corrosion. The most commonly used passivating agent is nitric acid. However, it is know that high levels of toxicity can be generated by using this agent. In this work, a study has been carried out into the electrochemical behavior of 15-5PH (precipitation hardening) and 17-4PH stainless steels passivated with (a) citric and (b) nitric acid solutions for 60 and 90 min at 49 °C, and subsequently exposed to an environment with chlorides. Two electrochemical techniques were used: electrochemical noise (EN) and potentiodynamic polarization curves (PPC) according to ASTM G199-09 and ASTM G5-13, respectively. The results obtained indicated that, for both types of steel, the passive layer formed in citric acid as passivating solution had very similar characteristics to that formed with nitric acid. Furthermore, after exposure to the chloride-containing solution and according with the localization index (LI) values obtained, the stainless steels passivated in citric acid showed a mixed type of corrosion, whereas the steels passivated in nitric acid showed localized corrosion. Overall, the results of the R n values derived show very low and similar corrosion rates for the stainless steels passivated with both citric and nitric acid solutions.

12.
Materials (Basel) ; 13(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456331

RESUMO

In this study, ternary ecological concrete (TEC) mixtures were produced with partial substitution of the ordinary Portland cement (OPC) by 10%, 20%, and 30% of sugar cane bagasse ash (SCBA) and silica fume (SF); a control mixture (100% OPC) was prepared according to ACI 211.1 standard. The studied TEC specimens were reinforced with AISI 304 stainless steel and AISI 1018 carbon steel rebars. TEC reinforced specimens were immersed in two different electrolytes, a control (DI-water) and 3.5 wt.% MgSO4 solution, for 180 days. The electrochemical corrosion was monitored by corrosion potential (Ecorr) according to ASTM C-876-15 standard, and the linear polarization resistance (LPR) technique using ASTM G59 standard. The Ecorr and current density icorr results show that AISI 304 stainless steel rebars have a high corrosion resistance, with icorr values below 0.1 µA/cm2, which is interpreted as a level of negligible corrosion. The best corrosion performance was found for the TEC mixture made with a 20% addition of blend of sugar cane bagasse ash-silica fume (SCBA-SF) to the OPC.

13.
Materials (Basel) ; 12(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816822

RESUMO

The use of supplementary cementitious materials such as fly ash, slag, and silica fume improve reinforced concrete corrosion performance, while decreasing cost and reducing environmental impact compared to ordinary Portland cement. In this study, the corrosion behavior of AISI 1018 carbon steel (CS) and AISI 304 stainless steel (SS) reinforcements was studied for 365 days. Three different concrete mixtures were tested: 100% CPC (composite Portland cement), 80% CPC and 20% silica fume (SF), and 80% CPC and 20% fly ash (FA). The concrete mixtures were designed according to the ACI 211.1 standard. The reinforced concrete specimens were immersed in a 3.5 wt.% NaCl test solution to simulate a marine environment. Corrosion monitoring was evaluated using the corrosion potential (Ecorr) according to ASTM C876 and the linear polarization resistance (LPR) according to ASTM G59. The results show that AISI 304 SS reinforcements yielded the best corrosion behavior, with Ecorr values mainly pertaining to the region of 10% probability of corrosion, and corrosion current density (icorr) values indicating passivity after 105 days of experimentation and low probability of corrosion for the remainder of the test period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA