Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Sci ; 210: 214-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849128

RESUMO

The miRNAs play important roles in regulation of gene expression at the post-transcriptional level. A small RNA and RNA-seq of libraries were constructed to identify miRNAs in Vriesea carinata, a native bromeliad species from Brazilian Atlantic Rainforest. Illumina technology was used to perform high throughput sequencing and data was analyzed using bioinformatics tools. We obtained 2,191,509 mature miRNAs sequences representing 54 conserved families in plant species. Further analysis allowed the prediction of secondary structures for 19 conserved and 16 novel miRNAs. Potential targets were predicted from pre-miRNAs by sequence homology and validated using RTqPCR approach. This study provides the first identification of miRNAs and their potential targets of a bromeliad species.


Assuntos
Bromeliaceae/genética , MicroRNAs/genética , Sequência de Bases , Brasil , Bromeliaceae/metabolismo , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Estresse Fisiológico
2.
PLoS One ; 7(11): e50663, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226347

RESUMO

MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. Members of 59 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally 29 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. Assembled mRNA-seq contigs allowed for a search of putative new precursors and led to the identification of 13 novel miRNA families. Analysis of miRNA population between libraries reveals that several miRNAs and isomiRNAs have different abundance in developing stages compared to mature seeds. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comparative study of the miRNA transcriptome of mature and developing B. napus seeds and provides a basis for future research on individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus.


Assuntos
Brassica napus/genética , Sequência Conservada , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Análise de Sequência de RNA , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Metabolismo Energético/genética , MicroRNAs/metabolismo , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/metabolismo , Transcriptoma
3.
Braz. j. microbiol ; Braz. j. microbiol;43(2): 711-715, Apr.-June 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-644489

RESUMO

Terrestrial isopods are widely infected with Wolbachia. However, little is known about the presence of bacteria in the Neotropical species. The objective of this study was to test the hypothesis of presence of Wolbachia infection in the native species of terrestrial isopods, Atlantoscia floridana and Circoniscus bezzii, and in the introduced species Burmoniscus meeusei.


Assuntos
Animais , Sequência de Bases , Amplificação de Genes , Técnicas In Vitro , Infecções por Rickettsiaceae/genética , Isópodes/genética , Fauna Marinha , Reação em Cadeia da Polimerase/métodos , Rickettsiaceae/genética , Wolbachia/genética , Diagnóstico , Métodos
4.
Braz J Microbiol ; 43(2): 711-5, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031883

RESUMO

Terrestrial isopods are widely infected with Wolbachia. However, little is known about the presence of bacteria in the Neotropical species. The objective of this study was to test the hypothesis of presence of Wolbachia infection in the native species of terrestrial isopods, Atlantoscia floridana and Circoniscus bezzii, and in the introduced species Burmoniscus meeusei.

5.
Genet Mol Biol ; 35(4 (suppl)): 980-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23413179

RESUMO

Wolbachia are endosymbiotic bacteria that commonly infect arthropods, inducing certain phenotypes in their hosts. So far, no endemic South American species of terrestrial isopods have been investigated for Wolbachia infection. In this work, populations from two species of Balloniscus (B. sellowii and B. glaber) were studied through a diagnostic PCR assay. Fifteen new Wolbachia 16S rDNA sequences were detected. Wolbachia found in both species were generally specific to one population, and five populations hosted two different Wolbachia 16S rDNA sequences. Prevalence was higher in B. glaber than in B. sellowii, but uninfected populations could be found in both species. Wolbachia strains from B. sellowii had a higher genetic variation than those isolated from B. glaber. AMOVA analyses showed that most of the genetic variance was distributed among populations of each species rather than between species, and the phylogenetic analysis suggested that Wolbachia strains from Balloniscus cluster within Supergroup B, but do not form a single monophyletic clade, suggesting multiple infections for this group. Our results highlight the importance of studying Wolbachia prevalence and genetic diversity in Neotropical species and suggest that South American arthropods may harbor a great number of diverse strains, providing an interesting model to investigate the evolution of Wolbachia and its hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA