Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 221(2): 818-833, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252143

RESUMO

Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.


Assuntos
Eucalyptus/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Característica Quantitativa Herdável , Padrões de Herança/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
2.
BMC Genomics ; 18(1): 524, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693539

RESUMO

BACKGROUND: The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. RESULTS: Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000-10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. CONCLUSIONS: This study provides further experimental data supporting positive prospects of using genome-wide data to capture large proportions of trait heritability and predict growth traits in trees with accuracies equal or better than those attainable by phenotypic selection. Additionally, our results document the superiority of the whole-genome regression approach in accounting for large proportions of the heritability of complex traits such as growth in contrast to the limited value of the local GWAS approach toward breeding applications in forest trees.


Assuntos
Cruzamento , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Estudo de Associação Genômica Ampla , Genômica , Teorema de Bayes , Genoma de Planta/genética , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
BMC Genomics ; 18(1): 423, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28558696

RESUMO

BACKGROUND: Common bean is a legume of social and nutritional importance as a food crop, cultivated worldwide especially in developing countries, accounting for an important source of income for small farmers. The availability of the complete sequences of the two common bean genomes has dramatically accelerated and has enabled new experimental strategies to be applied for genetic research. DArTseq has been widely used as a method of SNP genotyping allowing comprehensive genome coverage with genetic applications in common bean breeding programs. RESULTS: Using this technology, 6286 SNPs (1 SNP/86.5 Kbp) were genotyped in genic (43.3%) and non-genic regions (56.7%). Genetic subdivision associated to the common bean gene pools (K = 2) and related to grain types (K = 3 and K = 5) were reported. A total of 83% and 91% of all SNPs were polymorphic within the Andean and Mesoamerican gene pools, respectively, and 26% were able to differentiate the gene pools. Genetic diversity analysis revealed an average H E of 0.442 for the whole collection, 0.102 for Andean and 0.168 for Mesoamerican gene pools (F ST = 0.747 between gene pools), 0.440 for the group of cultivars and lines, and 0.448 for the group of landrace accessions (F ST = 0.002 between cultivar/line and landrace groups). The SNP effects were predicted with predominance of impact on non-coding regions (77.8%). SNPs under selection were identified within gene pools comparing landrace and cultivar/line germplasm groups (Andean: 18; Mesoamerican: 69) and between the gene pools (59 SNPs), predominantly on chromosomes 1 and 9. The LD extension estimate corrected for population structure and relatedness (r2SV) was ~ 88 kbp, while for the Andean gene pool was ~ 395 kbp, and for the Mesoamerican was ~ 130 kbp. CONCLUSIONS: For common bean, DArTseq provides an efficient and cost-effective strategy of generating SNPs for large-scale genome-wide studies. The DArTseq resulted in an operational panel of 560 polymorphic SNPs in linkage equilibrium, providing high genome coverage. This SNP set could be used in genotyping platforms with many applications, such as population genetics, phylogeny relation between common bean varieties and support to molecular breeding approaches.


Assuntos
Genômica , Técnicas de Genotipagem , Phaseolus/genética , Polimorfismo de Nucleotídeo Único , Loci Gênicos/genética , Genoma de Planta/genética , Desequilíbrio de Ligação , Chuva , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA