Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 16: 221, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26940004

RESUMO

BACKGROUND: Malaria control in South America has vastly improved in the past decade, leading to a decrease in the malaria burden. Despite the progress, large parts of the continent continue to be at risk of malaria transmission, especially in northern South America. The objectives of this study were to assess the risk of malaria transmission and vector exposure in northern South America using multi-criteria decision analysis. METHODS: The risk of malaria transmission and vector exposure in northern South America was assessed using multi-criteria decision analysis, in which expert opinions were taken on the key environmental and population risk factors. RESULTS: Results from our risk maps indicated areas of moderate-to-high risk along rivers in the Amazon basin, along the coasts of the Guianas, the Pacific coast of Colombia and northern Colombia, in parts of Peru and Bolivia and within the Brazilian Amazon. When validated with occurrence records for malaria, An. darlingi, An. albimanus and An. nuneztovari s.l., t-test results indicated that risk scores at occurrence locations were significantly higher (p < 0.0001) than a control group of geographically random points. CONCLUSION: In this study, we produced risk maps based on expert opinion on the spatial representation of risk of potential vector exposure and malaria transmission. The findings provide information to the public health decision maker/policy makers to give additional attention to the spatial planning of effective vector control measures. Therefore, as the region tackles the challenge of malaria elimination, prioritizing areas for interventions by using spatially accurate, high-resolution (1 km or less) risk maps may guide targeted control and help reduce the disease burden in the region.


Assuntos
Técnicas de Apoio para a Decisão , Malária/epidemiologia , Medição de Risco/métodos , Animais , Anopheles , Humanos , Insetos Vetores , Malária/prevenção & controle , Fatores de Risco , América do Sul/epidemiologia
2.
Parasit Vectors ; 8: 431, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289677

RESUMO

BACKGROUND: Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. METHODS: Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. RESULTS: Results from our land change modeling indicate that about 70,000 km(2) of forest land would be lost by 2050 and 78,000 km(2) by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. CONCLUSION: As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.


Assuntos
Agricultura , Mudança Climática , Insetos Vetores/fisiologia , Malária/epidemiologia , Malária/transmissão , Crescimento Demográfico , Distribuição Animal , Animais , Humanos , América do Sul/epidemiologia
3.
J Vector Ecol ; 40(1): 46-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047183

RESUMO

The catastrophic 2010 earthquake in Port-au-Prince, Haiti, led to the large-scale displacement of over 2.3 million people, resulting in rapid and unplanned urbanization in northern Haiti. This study evaluated the impact of this unplanned urbanization on mosquito ecology and vector-borne diseases by assessing land use and change patterns. Land-use classification and change detection were carried out on remotely sensed images of the area for 2010 and 2013. Change detection identified areas that went from agricultural, forest, or bare-land pre-earthquake to newly developed and urbanized areas post-earthquake. Areas to be sampled for mosquito larvae were subsequently identified. Mosquito collections comprised five genera and ten species, with the most abundant species being Culex quinquefasciatus 35% (304/876), Aedes albopictus 27% (238/876), and Aedes aegypti 20% (174/876). All three species were more prevalent in urbanized and newly urbanized areas. Anopheles albimanus, the predominate malaria vector, accounted for less than 1% (8/876) of the collection. A set of spectral indices derived from the recently launched Landsat 8 satellite was used as covariates in a species distribution model. The indices were used to produce probability surfaces maps depicting the likelihood of presence of the three most abundant species within 30 m pixels. Our findings suggest that the rapid urbanization following the 2010 earthquake has increased the amount of area with suitable habitats for urban mosquitoes, likely influencing mosquito ecology and posing a major risk of introducing and establishing emerging vector-borne diseases.


Assuntos
Aedes/fisiologia , Anopheles/fisiologia , Culex/fisiologia , Monitoramento Ambiental/métodos , Insetos Vetores/fisiologia , Animais , Ecossistema , Haiti , Larva , Malária/transmissão , Modelos Teóricos , Tecnologia de Sensoriamento Remoto , Inquéritos e Questionários , Urbanização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA