RESUMO
Chalcogenides semiconductors are currently being studied as active layers in the development of electronic devices in the field of applied technology. In the present paper, cadmium sulfide (CdS) thin films containing nanoparticles of the same material as the active layer were produced and analyzed for their application in fabricating optoelectronic devices. CdS thin films and CdS nanoparticles were obtained via soft chemistry at low temperatures. The CdS thin film was deposited via chemical bath deposition (CBD); the CdS nanoparticles were synthesized via the precipitation method. The construction of a homojunction was completed by incorporating CdS nanoparticles on CdS thin films deposited via CBD. CdS nanoparticles were deposited using the spin coating technique, and the effect of thermal annealing on the deposited films was investigated. In the modified thin films with nanoparticles, a transmittance of about 70% and a band gap between 2.12 eV and 2.35 eV were obtained. The two characteristic phonons of the CdS were observed via Raman spectroscopy, and the CdS thin films/CdS nanoparticles showed a hexagonal and cubic crystalline structure with average crystallite size of 21.3-28.4 nm, where hexagonal is the most stable for optoelectronic applications, with roughness less than 5 nm, indicating that CdS is relatively smooth, uniform and highly compact. In addition, the characteristic curves of current-voltage for as-deposited and annealed thin films showed that the metal-CdS with the CdS nanoparticle interface exhibits ohmic behavior.
RESUMO
The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220-250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm). However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films.
RESUMO
The applications of Bismuth Titanate (BixTiyOz) materials have been focused on their electronic and optical properties, but with respect to the use of these compounds in applications like corrosion resistance, have been very few or nonexistent. For this reason, in the present investigation BixTiyOz thin films were deposited using RF magnetron sputtering onto silicon wafers, stainless steel 316L, and titanium alloy (Ti6Al4V) substrates, in order to carry out a study of the corrosion behavior of this compound. The structural properties of the coatings were studied through X-ray diffraction (XRD), the morphology was determined using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and surface chemical composition was evaluated through X-ray photoelectron spectroscopy (XPS). The XRD results indicated that the films were amorphous. The SEM micrographs showed that the deposited films were homogeneous, but in some cases there were cracks. The potentiodynamic polarization technique showed that the corrosion current in the coated substrates decreased by an order of two magnitudes with respect to the uncoated substrates, but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS analysis shows that the deposited films contain both Bi3+ and Ti4+.