Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(45): 19853-61, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24145704

RESUMO

Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan δ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle-polyelectrolyte interfaces.


Assuntos
Cobalto/química , Compostos Férricos/química , Nanocompostos/química , Nanopartículas/química , Impedância Elétrica , Eletrodos , Transporte de Elétrons
2.
Phys Chem Chem Phys ; 13(48): 21233-42, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22025281

RESUMO

The paper reports on the successful use of the quartz crystal microbalance technique to assess accurate kinetics and equilibrium parameters regarding the investigation of in situ adsorption of nanosized cobalt ferrite particles (CoFe(2)O(4)--10.5 nm-diameter) onto two different surfaces. Firstly, a single layer of nanoparticles was deposited onto the surface provided by the gold-coated quartz resonator functionalized with sodium 3-mercapto propanesulfonate (3-MPS). Secondly, the layer-by-layer (LbL) technique was used to build multilayers in which the CoFe(2)O(4) nanoparticle-based layer alternates with the sodium sulfonated polystyrene (PSS) layer. The adsorption experiments were conducted by modulating the number of adsorbed CoFe(2)O(4)/PSS bilayers (n) and/or by changing the CoFe(2)O(4) nanoparticle concentration while suspended as a stable colloidal dispersion. Adsorption of CoFe(2)O(4) nanoparticles onto the 3-MPS-functionalized surface follows perfectly a first order kinetic process in a wide range (two orders of magnitude) of nanoparticle concentrations. These data were used to assess the equilibrium constant and the adsorption free energy. Alternatively, the Langmuir adsorption constant was obtained while analyzing the isotherm data at the equilibrium. Adsorption of CoFe(2)O(4) nanoparticles while growing multilayers of CoFe(2)O(4)/PSS was conducted using colloidal suspensions with CoFe(2)O(4) concentration in the range of 10(-8) to 10(-6) (moles of cobalt ferrite per litre) and for different numbers of cycles n = 1, 3, 5, and 10. We found the adsorption of CoFe(2)O(4) nanoparticles within the CoFe(2)O(4)/PSS bilayers perfectly following a first order kinetic process, with the characteristic rate constant growing with the increase of CoFe(2)O(4) nanoparticle concentration and decreasing with the rise of the number of LbL cycles (n). Additionally, atomic force microscopy was employed for assessing the LbL film roughness and thickness. We found the film thickness increasing from about 20 to 120 nm while shifting from 3 to 10 CoFe(2)O(4)/PSS bilayers, using the 8.9 × 10(-6) (moles of cobalt ferrite per litre) suspension.


Assuntos
Cobalto/química , Compostos Férricos/química , Nanopartículas Metálicas/química , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Ácidos Alcanossulfônicos/química , Coloides/química , Cinética , Poliestirenos/química
3.
J Nanosci Nanotechnol ; 7(3): 1069-71, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17450877

RESUMO

Internalization of biocompatible magnetic nanoparticles by red blood cells (RBCs) is a key issue for opportunities of new applications in the biomedical field. In this study, we used in vitro tests to provide evidences of magnetic nanoparticle internalization by mice red blood cells. The internalization process depends upon the nanoparticle concentration and the nanoparticle hydrodynamic radii. The cell internalization of surface-coated maghemite nanoparticles was indirectly tracked by Raman spectroscopy and directly observed using transmission electron microscopy. The observation of nanoparticle cell uptaking using in vitro experiments represents an important breakthrough for the application of nanomagnetism in diagnosis and therapy of RBC-related diseases.


Assuntos
Eritrócitos/metabolismo , Nanopartículas Metálicas/química , Animais , Transporte Biológico Ativo , Materiais Revestidos Biocompatíveis/química , Eritrócitos/ultraestrutura , Técnicas In Vitro , Magnetismo , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Camundongos , Microscopia Eletrônica , Nanotecnologia , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA