Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(14): 6450-6462, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559526

RESUMO

Pidilizumab is a monoclonal antibody tested against several types of malignancies, such as lymphoma and metastatic melanoma, showing promising results. In 2016, the FDA put Pidilizumab's clinical studies on partial hold due to emerging evidence pointing to the antibody target uncertainty. Although initial studies indicated an interaction with the PD-1 checkpoint receptor, recent updates assert that Pidilizumab binds primarily to Notch ligand DLL1. However, a detailed description of which interactions coordinate antibody-antigen complex formation is lacking. Therefore, this study uses computational tools to identify molecular interactions between Pidilizumab and its reported targets PD-1 and DLL1. A docking methodology was validated and applied to determine the binding modes between modeled Pidilizumab scFvs and the two antigens. We used Molecular Dynamics (MD) simulations to verify the complexes' stability and submitted the resulting trajectory files to MM/PBSA and Principal Component Analysis. A set of different prediction tools determined scFv interface hot-spots. Whereas docking and MD simulations revealed that the antibody fragments do not interact straightforwardly with PD-1, ten scFv hot-spots, including Met93 and Leu112, mediated the interaction with the DLL1 C2 domain. The interaction triggered a conformational selection-like effect on DLL1, allowing new hydrogen bonds on the ß3-ß4 interface loop. The unprecedented structural data on Pidilizumab's interactions provided novel evidence that its legitimate target is the DLL1 protein and offered structural insight on how these molecules interact, shedding light on the pathways that could be affected by the use of this essential immunobiological. Communicated by Ramaswamy H. Sarma.


Assuntos
Anticorpos Monoclonais , Receptor de Morte Celular Programada 1 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA