Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896020

RESUMO

The use of covers to protect blueberry orchards from adverse weather events has increased due to the variability in climate patterns, but the effects of rain covers and netting materials on yield and fruit quality have not been studied yet. This research evaluated the simultaneous effect of an LDPE plastic cover, a woven cover, and netting material on environmental components (UV light, PAR, NIR, and growing degree days (GDDs)), plant performance (light interception, leaf area index, LAI, yield, and flower development), and fruit quality traits (firmness, total soluble solids, and acidity) in two blueberry cultivars. On average, UV transmission under the netting was 11% and 43% higher compared to that under woven and LDPE plastic covers, while NIR transmission was 8-13% higher with both types of rain covers, with an increase in fruit air temperature and GDDs. Yield was 27% higher under the woven cover with respect to netting, but fruit firmness values under the netting were 12% higher than those of the LDPE plastic cover. Light interception, LAI, and flower development explained 64% (p = 0.0052) of the yield variation due to the cover material's effect. The obtained results suggest that the type of cover differentially affects yield and fruit quality in blueberries due to the specific light and temperature conditions generated under these materials.

2.
Curr Opin Biotechnol ; 78: 102790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116331

RESUMO

Paradoxically, refrigerating many fruits and vegetables destroys their quality, and may even accelerate their spoilage. This phenomenon, known as postharvest chilling injury (PCI), affects produce from tropical and subtropical regions and leads to economic and postharvest loss and waste. Low temperatures are used to pause the physiological processes associated with senescence, but upon rewarming, these processes may resume at an accelerated rate. Chilling-injured produce may be discarded for not meeting consumer expectations or may prematurely deteriorate. In this review, we describe progress made in identifying the cellular and molecular processes underlying PCI, and point to advances in biotechnological approaches for ameliorating symptoms. Further, we identify the gaps in knowledge that must be bridged to develop effective solutions to PCI.


Assuntos
Biotecnologia , Frutas , Frutas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA