Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(6): 240410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100159

RESUMO

Chalcone represents a vital biosynthetic scaffold owing to its numerous therapeutic effects. The present study was intended to synthesize 17 chalcone derivatives (3a-q) by direct coupling of substituted acetophenones and benzaldehyde. The target chalcones were characterized by spectroscopic analyses followed by their in vitro antimicrobial, and antileishmanial investigations with reference to standard drugs. The majority of the chalcones displayed good to excellent biological activities. Chalcone 3q (1000 µg ml-1) exhibited the most potent antibacterial effect with its zone of inhibition values of 30, 33 and 34 mm versus Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa respectively. The results also confirmed chalcone 3q to be the most potent versus Leishmania major with the lowest IC50 value of 0.59 ± 0.12 µg ml-1. Chalcone 3i (500 µg ml-1) was noticed to be the most potent antifungal agent with its zone of inhibition being 29 mm against Candida albicans. Computational studies of chalcones 3i and 3q supported the preliminary in vivo results. The existence of the amino moiety and bromine atom on ring-A and methoxy moieties on ring-B caused better biological effects of the chalcones. In brief, the investigations reveal that chalcones (3i and 3q) can be employed as building blocks to discover novel antimicrobial agents.

2.
J Mol Struct ; 1247: 131296, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34404957

RESUMO

The catastrophe of the coronavirus continues from one part of the world to another, and hardly a country is left without its devastations. Millions of people were infected and several hundred thousand died of the COVID-19 pandemic across the world. There is no clear targeted drug therapy available for the treatment of the patients. The discovery of vaccines is not enough to curtail its spread and disastrous implications. An instantly qualifying approach is needed to utilize the current drugs and isolated compounds. The purpose of this work is to determine potent inhibitors against the target proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For this purpose, molecular docking study of pathogenic spike glycoproteins (S), nucleocapsid phosphoprotein (N), an envelope protein (E), two drugs i.e., cefixime, etoposide, and a previously isolated compound nebrodenside A is performed. Promising results were obtained via complimentary analysis of molecular dynamics (MD) simulations performed for the complexes of three proteins with etoposide drug. Minimum values were recorded for the docking scores and binding energies of the complexes. These results were further supported by the RMSD, RMSF data for the stability of proteins and ligands. Additionally, ligand properties and ligand-protein contacts were also explained with histograms of every simulation trajectory. The computational studies confirmed that cefixime, etoposide, and nebrodenoside A can be used as potent inhibitors of COVID-19. Nevertheless, additional experimental investigations and validation of the selected candidates are mandatory to confirm their applicability for clinical trials.

3.
Colloids Surf B Biointerfaces ; 145: 373-381, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27214787

RESUMO

Aminodextran (AMD) polymer was prepared via chemical grafting of hexamethylenediamine on oxidized dextran. Magnetic latex particles were successfully obtained by adsorption of positively charged AMD on negatively charged submicron magnetic emulsion. The adsorbed amount was found to be ranged from 20 to 1280mg of AMD per gram of dried magnetic dispersion. The AMD-coated magnetic emulsions were characterized by positive zeta potential in the pH range from 3 to 9 compared to bare seed magnetic emulsion. All the samples showed to be superparamagnetic property, even after the adsorption of the polymer. The developed magnetic submicron particles exhibited good potential for in vivo biomedical diagnosis applications as demonstrated by their higher T2 contrast-ability compared to Gd in magnetic resonance imaging (MRI) and hyperthermia.


Assuntos
Emulsões/química , Polímeros/química , Meios de Contraste/química , Compostos Férricos/química , Hipertermia Induzida , Imageamento por Ressonância Magnética , Nanomedicina Teranóstica
4.
Int J Pharm ; 493(1-2): 313-27, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232700

RESUMO

Recently, significant research efforts have been devoted to the finding of efficient approaches in order to reduce the side effects of traditional cancer therapy and diagnosis. In this context, magnetic nanoparticles have attracted much attention because of their unique physical properties, magnetic susceptibility, biocompatibility, stability and many more relevant characteristics. Particularly, magnetic nanoparticles for in vivo biomedical applications need to fulfill special criteria with respect to size, size distribution, surface charge, biodegradability or bio-eliminability and optionally bear well selected ligands for specific targeting. In this context, many routes have been developed to synthesize these materials, and tune their functionalities through intriguing techniques including functionalization, coating and encapsulation strategies. In this review article, the use of magnetic nanoparticles for cancer therapy and diagnosis is evaluated addressing potential applications in MRI, drug delivery, hyperthermia, theranostics and several other domains. In view of potential biomedical applications of magnetic nanoparticles, the review focuses on the most recent progress made with respect to synthetic routes to produce magnetic nanoparticles and their salient accomplishments for in vivo cancer diagnosis and therapy.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Humanos , Fenômenos Magnéticos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA