Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2019: 7627148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065279

RESUMO

Human mesenchymal stem cells (MSCs) are good candidates for brain cell replacement strategies and have already been used as adjuvant treatments in neurological disorders. MSCs can be obtained from many different sources, and the present study compares the potential of neuronal transdifferentiation in MSCs from adult and neonatal sources (Wharton's jelly (WhJ), dental pulp (DP), periodontal ligament (PDL), gingival tissue (GT), dermis (SK), placenta (PLAC), and umbilical cord blood (UCB)) with a protocol previously tested in bone marrow- (BM-) MSCs consisting of a cocktail of six small molecules: I-BET151, CHIR99021, forskolin, RepSox, Y-27632, and dbcAMP (ICFRYA). Neuronal morphology and the presence of cells positive for neuronal markers (TUJ1 and MAP2) were considered attributes of neuronal induction. The ICFRYA cocktail did not induce neuronal features in WhJ-MSCs, and these features were only partial in the MSCs from dental tissues, SK-MSCs, and PLAC-MSCs. The best response was found in UCB-MSCs, which was comparable to the response of BM-MSCs. The addition of neurotrophic factors to the ICFRYA cocktail significantly increased the number of cells with complex neuron-like morphology and increased the number of cells positive for mature neuronal markers in BM- and UCB-MSCs. The neuronal cells generated from UCB-MSCs and BM-MSCs showed increased reactivity of the neuronal genes TUJ1, MAP2, NF-H, NCAM, ND1, TAU, ENO2, GABA, and NeuN as well as down- and upregulation of MSC and neuronal genes, respectively. The present study showed marked differences between the MSCs from different sources in response to the transdifferentiation protocol used here. These results may contribute to identifying the best source of MSCs for potential cell replacement therapies.

2.
Neurochem Res ; 42(2): 415-427, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27804011

RESUMO

Neural progenitors (NP), found in fetal and adult brain, differentiate into neurons potentially able to be used in cell replacement therapies. This approach however, raises technical and ethical problems which limit their potential therapeutic use. Alternately, NPs can be obtained by transdifferentiation of non-neural somatic cells evading these difficulties. Human bone marrow mesenchymal stromal cells (MSCs) are suggested to transdifferentiate into NP-like cells, which however, have a low proliferation capacity. The present study demonstrates the requisite of cell adhesion for proliferation and survival of NP-like cells and re-evaluates some neuronal features after differentiation by standard procedures. Mature neuronal markers, though, were not detected by these procedures. A chemical differentiation approach was used in this study to convert MSCs-derived NP-like cells into neurons by using a cocktail of six molecules, CHIR99021, I-BET151, RepSox, DbcAMP, forskolin and Y-27632, defined after screening combinations of 22 small molecules. Direct transdifferentiation of MSCs into neuronal cells was obtained with the small molecule cocktail, without requiring the NP-like intermediate stage.


Assuntos
Proliferação de Células/fisiologia , Transdiferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Adolescente , Adulto , Amidas/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/administração & dosagem , Combinação de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piridinas/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA