Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255914

RESUMO

Liposomes are microstructures containing lipid and aqueous phases employed in the encapsulation and delivery of bioactive agents. Quercetin-loaded liposomes (QLLs) were coated with three different polysaccharides and then tested as radical scavengers. Lactose (LCQLL), chitosan (CCQLL), and inulin (ICQLL) were employed as coating materials. Particle size determined by light scattering, showed primary size of 200 nm for all samples, while a secondary particle size of 600 nm was observed for CCQLL. Scanning electron microscopy (SEM) evidenced particle aggregation with the addition of the polysaccharide coating. Transmission electron microscopy (TEM) revealed the layered microstructure of liposomes composed of at least two layers, and primary particle size below 100 nm. QLL showed higher antioxidant activity than the coated liposomes. This behavior was attributed to the chemical interaction between quercetin and the corresponding coating polysaccharide in the layered structure, which traps the quercetin and keeps it unavailable for radical scavenging. From the three polysaccharides, lactose showed a better performance as coating material in the antioxidant activity, which suggested that the smaller size of the disaccharide molecule resulted in a faster releasing of the quercetin in the solution. Thus, LCQLL is an advantageous way to deliver quercetin for antioxidant purposes, where the low stability in delivered media of quercetin loaded liposomes is commonly compromised.

2.
Materials (Basel) ; 6(6): 2534-2542, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28809289

RESUMO

Carbon nanotubes with single and few walls are highly appreciated for their technological applications, regardless of the limited availability due to their high production cost. In this paper we present an alternative process that can lead to lowering the manufacturing cost of CNTs of only few walls by means of the use of the spray pyrolysis technique. For this purpose, ferrocene is utilized as a catalyst and aliphatic alcohols (methanol, ethanol, propanol or butanol) as the carbon source. The characterization of CNTs was performed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The study of the synthesized carbon nanotubes (CNTs) show important differences in the number of layers that constitute the nanotubes, the diameter length, the quantity and the quality as a function of the number of carbons employed in the alcohol. The main interest of this study is to give the basis of an efficient synthesis process to produce CNTs of few walls for applications where small diameter is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA