RESUMO
The immune system interacts closely with tumors during the disease development and progression to metastasis. The complex communication between the immune system and the tumor cells can prevent or promote tumor growth. New therapeutic approaches harnessing protective immunological mechanisms have recently shown very promising results. This is performed by blocking inhibitory signals or by activating immunological effector cells directly. Immune checkpoint blockade with monoclonal antibodies directed against the inhibitory immune receptors CTLA-4 and PD-1 has emerged as a successful treatment approach for patients with advanced melanoma. Ipilimumab is an anti-CTLA-4 antibody which demonstrated good results when administered to patients with melanoma. Gene therapy has also shown promising results in clinical trials. Particularly, Herpes simplex virus (HSV)-mediated delivery of the HSV thymidine kinase (TK) gene to tumor cells in combination with ganciclovir (GCV) may provide an effective suicide gene therapy for destruction of glioblastomas, prostate tumors and other neoplasias by recruiting tumor-infiltrating lymphocytes into the tumor. The development of new treatment strategies or combination of available innovative therapies to improve cell cytotoxic T lymphocytes trafficking into the tumor mass and the production of inhibitory molecules blocking tumor tissue immune-tolerance are crucial to improve the efficacy of cancer therapy.
El sistema inmune interactúa íntimamente con los tumores durante el proceso del desarrollo de la enfermedad y su progresión a metástasis. Esta compleja comunicación entre el sistema inmune y las células tumorales puede prevenir o promover el crecimiento del tumor. Los nuevos enfoques terapéuticos que aprovechan los mecanismos inmunológicos, ya sea por el bloqueo de señales inhibitorias o por la activación directa de células efectoras, han mostrado resultados prometedores. El bloqueo de puntos de control inmunológicos immune-checkpoints con anticuerpos monoclonales dirigidos contra receptores que normalmente inhiben el sistema inmune, como CTLA-4 o PD-1, ha resultado ser un tratamiento exitoso para pacientes con melanoma avanzado. El fármaco ipilimumab es un anticuerpo anti-CTLA-4 que ha demostrado buenos resultados terapéuticos en pacientes con melanoma. Por otro lado, la terapia génica también ha mostrado resultados prometedores en ensayos clínicos. En especial, la administración de la enzima timidina quinasa del virus Herpes simplex (HSV-TK) en combinación con el fármaco ganciclovir (GCV) ha mostrado ser una terapia suicida muy efectiva para la destrucción de diferentes neoplasias incluyendo glioblastomas y tumores prostáticos, por un mecanismo que involucra el reclutamiento de linfocitos infiltrantes de tumor. Es importante la búsqueda de nuevas estrategias o la combinación de terapias innovadoras, con el fin de involucrar tanto la atracción de linfocitos citotóxicos así como el empleo de moléculas que inhiban la inmunotolerancia del tejido tumoral para mejorar la eficiencia de los tratamientos contra el cáncer.
Assuntos
Terapia Genética/métodos , Imunoterapia/métodos , Neoplasias/terapia , Antígeno CTLA-4 , Terapia Combinada/métodos , Humanos , Sistema Imunitário , Imunidade Celular , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologiaRESUMO
Abstract The immune system interacts closely with tumors during the disease development and progression to metastasis. The complex communication between the immune system and the tumor cells can prevent or promote tumor growth. New therapeutic approaches harnessing protective immunological mechanisms have recently shown very promising results. This is performed by blocking inhibitory signals or by activating immunological effector cells directly. Immune checkpoint blockade with monoclonal antibodies directed against the inhibitory immune receptors CTLA-4 and PD-1 has emerged as a successful treatment approach for patients with advanced melanoma. Ipilimumab is an anti-CTLA-4 antibody which demonstrated good results when administered to patients with melanoma. Gene therapy has also shown promising results in clinical trials. Particularly, Herpes simplex virus (HSV)-mediated delivery of the HSV thymidine kinase (TK) gene to tumor cells in combination with ganciclovir (GCV) may provide an effective suicide gene therapy for destruction of glioblastomas, prostate tumors and other neoplasias by recruiting tumor-infiltrating lymphocytes into the tumor. The development of new treatment strategies or combination of available innovative therapies to improve cell cytotoxic T lymphocytes trafficking into the tumor mass and the production of inhibitory molecules blocking tumor tissue immune-tolerance are crucial to improve the efficacy of cancer therapy.
Resumen El sistema inmune interactúa íntimamente con los tumores durante el proceso del desarrollo de la enfermedad y su progresión a metástasis. Esta compleja comunicación entre el sistema inmune y las células tumorales puede prevenir o promover el crecimiento del tumor. Los nuevos enfoques terapéuticos que aprovechan los mecanismos inmunológicos, ya sea por el bloqueo de señales inhibitorias o por la activación directa de células efectoras, han mostrado resultados prometedores. El bloqueo de puntos de control inmunológicos (immune-checkpoints) con anticuerpos monoclonales dirigidos contra receptores que normalmente inhiben el sistema inmune, como CTLA-4 o PD-1, ha resultado ser un tratamiento exitoso para pacientes con melanoma avanzado. El fármaco ipilimumab es un anticuerpo anti-CTLA-4 que ha demostrado buenos resultados terapéuticos en pacientes con melanoma. Por otro lado, la terapia génica también ha mostrado resultados prometedores en ensayos clínicos. En especial, la administración de la enzima timidina quinasa del virus Herpes simplex (HSV-TK) en combinación con el fármaco ganciclovir (GCV) ha mostrado ser una terapia suicida muy efectiva para la destrucción de diferentes neoplasias incluyendo glioblastomas y tumores prostáticos, por un mecanismo que involucra el reclutamiento de linfocitos infiltrantes de tumor. Es importante la búsqueda de nuevas estrategias o la combinación de terapias innovadoras, con el fin de involucrar tanto la atracción de linfocitos citotóxicos así como el empleo de moléculas que inhiban la inmunotolerancia del tejido tumoral para mejorar la eficiencia de los tratamientos contra el cáncer.
Assuntos
Humanos , Terapia Genética/métodos , Imunoterapia/métodos , Neoplasias/terapia , Linfócitos T Reguladores/imunologia , Terapia Combinada/métodos , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1/metabolismo , Sistema Imunitário , Imunidade Celular , Neoplasias/imunologiaRESUMO
BACKGROUND & AIMS: An extrahepatic human neutrophil collagenase complementary DNA (matrix metalloprotease-8) cloned in an adenovirus vector was used as a therapeutic agent in cirrhosis. METHODS: A high titer of clinical-grade AdMMP8 was obtained. RESULTS: HeLa cells transduced with AdMMP8 expressed recombinant matrix metalloprotease-8 messenger RNA and matrix metalloprotease-8 protein. Matrix metalloprotease-8 in culture sups showed enzymatic activity against native collagen type I, which was inhibited by ethylenediaminetetraacetic acid, 1,10-phenanthroline, and tissue inhibitor of metalloprotease-1. In vivo transduction showed matrix metalloprotease-8 activity, and studies to establish the efficacy of this characterized vector were performed in CCl(4) and bile duct-ligated cirrhotic rats. Transduction with 3 x 10(11) viral particles per kilogram resulted in hepatic detection of both messenger RNA and protein matrix metalloprotease-8. A consistent response in fibrosis reversal was observed in CCl(4) rats. Liver fibrosis in bile duct-ligated cirrhotic animals was decreased in 45%, along with diminished hydroxyproline content, after AdMMP8 treatment. The expression of matrix metalloprotease-2 and matrix metalloprotease-3 was up-regulated in AdMMP8 rats. Free tissue inhibitor of metalloprotease-1, as an indirect measurement of active uncomplexed matrix metalloproteases, was also increased in the AdMMP8 groups. Transforming growth factor-beta messenger RNA was diminished, and matrix metalloprotease-9 and hepatocyte growth factor increased. Treatment in both models correlated with improvements in ascites, functional hepatic tests, and gastric varices, indicating diminished intrahepatic blood pressure in animals injected with AdMMP8. CONCLUSIONS: Therefore, therapy with the matrix metalloprotease-8 gene is promising for use in a clinical setting.
Assuntos
Terapia Genética , Cirrose Hepática Experimental/terapia , Metaloproteinase 8 da Matriz/genética , Adenoviridae/genética , Animais , Tetracloreto de Carbono , Colágeno/metabolismo , Meios de Cultura , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Células HeLa , Humanos , Veia Ilíaca , Cirrose Hepática Experimental/induzido quimicamente , Masculino , Metaloproteinase 8 da Matriz/metabolismo , RNA Mensageiro/genética , Ratos , Ratos WistarRESUMO
Gene therapy may represent a new avenue for the development of multimodal treatment for diverse forms of cirrhosis. This study explores the potential benefits of combining adenovirus-mediated human urokinase-plasminogen activator (AdHuPA) gene delivery and biliodigestive anastomosis to enhance the therapeutic efficacy of each treatment alone for cholestatic disorders resulting in secondary biliary cirrhosis. In an experimental model of secondary biliary cirrhosis, application of 6 x 10(11) vp/kg AdHuPA adenovirus vector resulted in 25.8% liver fibrosis reduction and some improvement in liver histology. The relief of bile cholestasis by a surgical procedure (biliodigestive anastomosis) combined with AdHuPA hepatic gene delivery rendered a synergistic effect, with a substantial 56.9 to 42.9% fibrosis decrease. AdHuPA transduction resulted in clear-cut expression of human uPA protein detected by immunohistochemistry and induction of up-regulation in the expression of metalloproteinases MMP-3, MMP-9, and MMP-2. Importantly, functional hepatic tests, specifically direct bilirubin, were improved. Also, hepatic cell regeneration, rearrangement of hepatic architecture, ascites, and gastric varices improved in cirrhotic rats treated with AdHuPA but not in counterpart AdGFP cirrhotic animals. We believe this might represent a novel therapeutic strategy for human cholestatic diseases.
Assuntos
Adenoviridae/genética , Coledocostomia , Terapia Genética , Cirrose Hepática Biliar/terapia , Ativador de Plasminogênio Tipo Uroquinase/genética , Animais , Terapia Combinada , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Fígado/enzimologia , Cirrose Hepática Biliar/patologia , Cirrose Hepática Biliar/cirurgia , Regeneração Hepática , Metaloproteases/biossíntese , Ratos , Ratos Wistar , Regulação para CimaRESUMO
Gene therapy is a new modality of treatment in which a gene is used to modify or add new biochemical properties to a patient's target cells with therapeutics purposes. Currently, this experimental therapy is under intensive development as an alternative to treat cancer, because it is possible that this therapy may generate a higher antineoplastic activity, more tissue selectivity and less contralateral effects than conventional therapy. After a decade of preclinical and clinical assays, still there are several obstacles that impose limits to the antineoplastic efficacy of this therapy. However, with the advances in molecular biology and related fields, there is a promise to improve, expand and strength the powerful antineoplastic arsenal of gene therapy.
Assuntos
Terapia Genética , Neoplasias/terapia , Ensaios Clínicos como Assunto , Vetores Genéticos , Humanos , Imunoterapia , Neoplasias/genética , Transdução GenéticaRESUMO
Gene therapy is a new modality of treatment in which a gene is used to modify or add new biochemical properties to a patient's target cells with therapeutics purposes. Currently, this experimental therapy is under intensive development as an alternative to treat cancer, because it is possible that this therapy may generate a higher antineoplastic activity, more tissue selectivity and less contralateral effects than conventional therapy. After a decade of preclinical and clinical assays, still there are several obstacles that impose limits to the antineoplastic efficacy of this therapy. However, with the advances in molecular biology and related fields, there is a promise to improve, expand and strength the powerful antineoplastic arsenal of gene therapy.