Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Foods ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38231759

RESUMO

The term new genomic techniques (NGTs) is an umbrella term used to describe a variety of techniques that can alter the genetic material of an organism and that have emerged or have been developed since 2001, when the existing genetically modified organism (GMO) legislation was adopted. The analytical framework used to detect GMOs in Europe is an established single harmonized procedure that is mandatory for the authorization of GM food and feed, thus generating a reliable, transparent, and effective labeling scheme for GMO products. However, NGT products can challenge the implementation and enforcement of the current regulatory system in the EU, relating in particular to the detection of NGT products that contain no foreign genetic material. Consequently, the current detection methods might fail to meet the minimum performance requirements. Although existing detection methods may be able to detect and quantify even small alterations in the genome, this does not necessarily confirm the distinction between products resulting from NGTs subject to the GMO legislation and other products. Therefore, this study provides a stepwise approach for the in silico prediction of PCR systems' specificity by testing a bioinformatics pipeline for amplicon and primer set searches in current genomic databases. In addition, it also empirically tested the PCR system evaluated during the in silico analysis. Two mutant genotypes produced by CRISPR-Cas9 in Arabidopsis thaliana were used as a case study. Overall, our results demonstrate that the single PCR system developed for identifying a nucleotide insertion in the grf1-3 genotype has multiple matches in the databases, which do not enable the discrimination of this mutated event. Empirical assays further support this demonstration. In contrast, the second mutated genotype, grf8-61, which contains a -3 bp deletion, did not yield any matches in the sequence variant database. However, the primer sequences were not efficient during the empirical assay. Our approach represents a first step in decision making for analytical methods for NGT detection, identification, and quantification in light of the European labeling regulations.

2.
Genes (Basel) ; 11(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887261

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology allows the modification of DNA sequences in vivo at the location of interest. Although CRISPR-Cas9 can produce genomic changes that do not require DNA vector carriers, the use of transgenesis for the stable integration of DNA coding for gene-editing tools into plant genomes is still the most used approach. However, it can generate unintended transgenic integrations, while Cas9 prolonged-expression can increase cleavage at off-target sites. In addition, the selection of genetically modified cells from millions of treated ones, especially plant cells, is still challenging. In a protoplast system, previous studies claimed that such pitfalls would be averted by delivering pre-assembled ribonucleoprotein complexes (RNPs) composed of purified recombinant Cas9 enzyme and in vitro transcribed guide RNA (gRNA) molecules. We, therefore, aimed to develop the first DNA-free protocol for gene-editing in maize and introduced RNPs into their protoplasts with polyethylene glycol (PEG) 4000. We performed an effective transformation of maize protoplasts using different gRNAs sequences targeting the inositol phosphate kinase gene, and by applying two different exposure times to RNPs. Using a low-cost Sanger sequencing protocol, we observed an efficiency rate of 0.85 up to 5.85%, which is equivalent to DNA-free protocols used in other plant species. A positive correlation was displayed between the exposure time and mutation frequency. The mutation frequency was gRNA sequence- and exposure time-dependent. In the present study, we demonstrated that the suitability of RNP transfection was proven as an effective screening platform for gene-editing in maize. This efficient and relatively easy assay method for the selection of gRNA suitable for the editing of the gene of interest will be highly useful for genome editing in maize, since the genome size and GC-content are large and high in the maize genome, respectively. Nevertheless, the large amplitude of mutations at the target site require scrutiny when checking mutations at off-target sites and potential safety concerns.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Polietilenoglicóis/química , Ribonucleoproteínas/genética , Zea mays/genética , Edição de Genes/métodos , Genoma de Planta/genética , Células Vegetais/fisiologia , Protoplastos/fisiologia , RNA Guia de Cinetoplastídeos/genética , Zea mays/fisiologia
3.
PLoS One ; 12(2): e0173069, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28245233

RESUMO

Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Proteômica/métodos , Zea mays/metabolismo , Cromatografia Líquida , Secas , Metabolômica/métodos , Plantas Geneticamente Modificadas/genética , Espectrometria de Massas em Tandem , Zea mays/genética
4.
Sci. agric. ; 72(1): 62-68, Jan.-Feb. 2015. ta, graf, ilus
Artigo em Inglês | VETINDEX | ID: vti-30060

RESUMO

Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) is a major insect pest that has significant economic impact on apple growers worldwide. Modern breeding technologies rely on several molecular tools to help breeders select genetic determinants for traits of interest. Consequently, there is a need for specific markers linked to the genes of interest. Apple scions and rootstocks have an additional barrier to the introduction of pest resistance genes due to the presence of self-incompatibility S-RNase alleles. The genetic characterization and early identification of these alleles can amplify the contribution of a breeding program to the selection of resistant genitors that are as compatible as possible. In this study, we identified the Er1 gene involved in the resistance to WAA in Malus prunifolia var. ringo, also known as Maruba Kaido rootstock, and we analyzed the inheritance pattern of the WAA resistance Er1 gene in a segregant population derived from Malus pumila M.9 and Maruba Kaido rootstocks. The self-incompatibility of S-RNase alleles S6S26 of Maruba Kaido were also identified along with their inheritance pattern. We also confirmed the identification of the S1S3 alleles in the M.9 rootstock. To the best of our knowledge, this is the first study to characterize WAA resistance and RNase S-alleles in Maruba Kaido. Furthermore, we discuss the potential use of the genetic markers for these genes and their potential impact on apple breeding programs.(AU)


Assuntos
Melhoramento Vegetal , Pragas da Agricultura , Malus/genética
5.
Sci. agric ; 72(1): 62-68, Jan.-Feb. 2015. ta, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1497466

RESUMO

Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) is a major insect pest that has significant economic impact on apple growers worldwide. Modern breeding technologies rely on several molecular tools to help breeders select genetic determinants for traits of interest. Consequently, there is a need for specific markers linked to the genes of interest. Apple scions and rootstocks have an additional barrier to the introduction of pest resistance genes due to the presence of self-incompatibility S-RNase alleles. The genetic characterization and early identification of these alleles can amplify the contribution of a breeding program to the selection of resistant genitors that are as compatible as possible. In this study, we identified the Er1 gene involved in the resistance to WAA in Malus prunifolia var. ringo, also known as Maruba Kaido rootstock, and we analyzed the inheritance pattern of the WAA resistance Er1 gene in a segregant population derived from Malus pumila M.9 and Maruba Kaido rootstocks. The self-incompatibility of S-RNase alleles S6S26 of Maruba Kaido were also identified along with their inheritance pattern. We also confirmed the identification of the S1S3 alleles in the M.9 rootstock. To the best of our knowledge, this is the first study to characterize WAA resistance and RNase S-alleles in Maruba Kaido. Furthermore, we discuss the potential use of the genetic markers for these genes and their potential impact on apple breeding programs.


Assuntos
Malus/genética , Melhoramento Vegetal , Pragas da Agricultura
6.
Proteome Sci ; 11(1): 46, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24304660

RESUMO

BACKGROUND: Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator. RESULTS: In the first stage of the analysis, the main sources of variation in the dataset were identified by using Principal Components Analysis which correlated most of the variation to the different agroecosystems conditions. Comparative analysis within each field revealed a total of thirty two differentially expressed proteins between GM and non-GM samples that were identified and their molecular functions were mainly assigned to carbohydrate and energy metabolism, genetic information processing and stress response. CONCLUSIONS: To the best of our knowledge this study represents the first evidence of protein identities with differentially expressed isoforms in Brazilian MON810 genetic background hybrid grown under field conditions. As global databases on outputs from "omics" analysis become available, these could provide a highly desirable benchmark for safety assessments.

7.
Plant Sci ; 210: 224-31, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849129

RESUMO

Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis.


Assuntos
Feijoa/metabolismo , Proteínas de Plantas/análise , Proteômica , Feijoa/anatomia & histologia , Feijoa/genética , Feijoa/crescimento & desenvolvimento , Proteínas de Choque Térmico/análise , Proteínas de Choque Térmico/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/metabolismo , Espectrometria de Massas em Tandem , Eletroforese em Gel Diferencial Bidimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA