Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Semina ciênc. agrar ; 35(3): 1637-1648, 2014.
Artigo em Português | VETINDEX | ID: biblio-1499625

RESUMO

Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.


Assumir distribuições como a normal nas análises de dados é comum em diferentes áreas do conhecimento. Entretanto, pode-se fazer uso de outras que possuem capacidade de modelar também o parâmetro de assimetria, para as situações em que são necessários modelar dados com caudas mais pesadas que a normal. Este trabalho pretende apresentar alternativas à suposição de normalidade nos erros, dispondo também de distribuições assimétricas. Propõe-se uma abordagem Bayesiana para ajuste de modelos não-lineares quando os erros não são normais. Assim, adotam-se as distribuições t, skewnormal e skew-t. A metodologia visa aplicação em diferentes curvas de crescimento para dados de pesos de codornas. Verifica-se que os modelos de Gompertz com erros skew-normal e skew-t, respectivamente, para machos e fêmeas, são os que melhor se ajustam aos dados.


Assuntos
Animais , Coturnix/crescimento & desenvolvimento , Crescimento e Desenvolvimento , Teorema de Bayes , Análise de Dados , Dinâmica não Linear
2.
Semina Ci. agr. ; 35(3): 1637-1648, 2014.
Artigo em Português | VETINDEX | ID: vti-26311

RESUMO

Bayesian modeling growth curves for quail assuming skewness in errors - To assume normal distributions in the data analysis is common in different areas of the knowledge. However we can make use of the other distributions that are capable to model the skewness parameter in the situations that is needed to model data with tails heavier than the normal. This article intend to present alternatives to the assumption of the normality in the errors, adding asymmetric distributions. A Bayesian approach is proposed to fit nonlinear models when the errors are not normal, thus, the distributions t, skew-normal and skew-t are adopted. The methodology is intended to apply to different growth curves to the quail body weights. It was found that the Gompertz model assuming skew-normal errors and skew-t errors, respectively for male and female, were the best fitted to the data.


Assumir distribuições como a normal nas análises de dados é comum em diferentes áreas do conhecimento. Entretanto, pode-se fazer uso de outras que possuem capacidade de modelar também o parâmetro de assimetria, para as situações em que são necessários modelar dados com caudas mais pesadas que a normal. Este trabalho pretende apresentar alternativas à suposição de normalidade nos erros, dispondo também de distribuições assimétricas. Propõe-se uma abordagem Bayesiana para ajuste de modelos não-lineares quando os erros não são normais. Assim, adotam-se as distribuições t, skewnormal e skew-t. A metodologia visa aplicação em diferentes curvas de crescimento para dados de pesos de codornas. Verifica-se que os modelos de Gompertz com erros skew-normal e skew-t, respectivamente, para machos e fêmeas, são os que melhor se ajustam aos dados.


Assuntos
Animais , Coturnix/crescimento & desenvolvimento , Teorema de Bayes , Crescimento e Desenvolvimento , Análise de Dados , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA