RESUMO
Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,1 but generally little is known about the factors affecting their maintenance in populations.2 We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.3 Here we show that the polymorphism arose in the Galápagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecological selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.
Assuntos
Bico , Dioxigenases/genética , Tentilhões , Proteínas de Peixes/genética , Animais , Equador , Tentilhões/genética , Genótipo , Polimorfismo GenéticoRESUMO
Complex organismal structures are organized into modules, suites of traits that develop, function, and vary in a coordinated fashion. By limiting or directing covariation among component traits, modules are expected to represent evolutionary building blocks and to play an important role in morphological diversification. But how stable are patterns of modularity over macroevolutionary timescales? Comparative analyses are needed to address the macroevolutionary effect of modularity, but to date few have been conducted. We describe patterns of skull diversity and modularity in Caribbean Anolis lizards. We first diagnose the primary axes of variation in skull shape and then examine whether diversification of skull shape is concentrated to changes within modules or whether changes arose across the structure as a whole. We find no support for the hypothesis that cranial modules are conserved as species diversify in overall skull shape. Instead we find that anole skull shape and modularity patterns independently converge. In anoles, skull modularity is evolutionarily labile and may reflect the functional demands of unique skull shapes. Our results suggest that constraints have played little role in limiting or directing the diversification of head shape in Anolis lizards.
Assuntos
Lagartos/anatomia & histologia , Lagartos/genética , Seleção Genética , Crânio/anatomia & histologia , Crânio/fisiologia , Animais , Evolução Biológica , Funções Verossimilhança , Filogenia , Índias OcidentaisRESUMO
One of the classic examples of adaptive radiation under natural selection is the evolution of 15 closely related species of Darwin's finches (Passeriformes), whose primary diversity lies in the size and shape of their beaks. Since Charles Darwin and other members of the Beagle expedition collected these birds on the Galápagos Islands in 1835 and introduced them to science, they have been the subjects of intense research. Many biology textbooks use Darwin's finches to illustrate a variety of topics of evolutionary theory, such as speciation, natural selection and niche partitioning. Today, as this Theme Issue illustrates, Darwin's finches continue to be a very valuable source of biological discovery. Certain advantages of studying this group allow further breakthroughs in our understanding of changes in recent island biodiversity, mechanisms of speciation and hybridization, evolution of cognitive behaviours, principles of beak/jaw biomechanics as well as the underlying developmental genetic mechanisms in generating morphological diversity. Our objective was to bring together some of the key workers in the field of ecology and evolutionary biology who study Darwin's finches or whose studies were inspired by research on Darwin's finches. Insights provided by papers collected in this Theme Issue will be of interest to a wide audience.