Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 3959-3986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39252766

RESUMO

Introduction: Pulmonary fibrosis (PF) and tissue remodeling can greatly impair pulmonary function and often lead to fatal outcomes. Methodology: In the present study, we explored a novel molecular interplay of long noncoding (Lnc) RNA CBR3-AS1/ miRNA-29/ FIZZ1 axis in moderating the inflammatory processes, immunological responses, and oxidative stress pathways in bleomycin (BLM)-induced lung fibrosis. Furthermore, we investigated the pharmacological potential of Trimetazidine (TMZ) in ameliorating lung fibrosis. Results: Our results revealed that the BLM-treated group exhibited a significant upregulation in the expression of epigenetic regulators, lncRNA CBR3-AS1 and FIZZ1, compared to the control group (P<0.0001), along with the downregulation of miRNA-29 expression. Furthermore, Correlation analysis showed a significant positive association between lnc CBR3-AS1 and FIZZ1 (R=0.7723, p<0.05) and a significant negative association between miRNA-29 and FIZZ1 (R=-0.7535, p<0.05), suggesting lnc CBR3-AS1 as an epigenetic regulator of FIZZ1 in lung fibrosis. BLM treatment significantly increased the expression of Notch, Jagged1, Smad3, TGFB1, and hydroxyproline. Interestingly, the administration of TMZ demonstrated the ability to attenuate the deterioration effects caused by BLM treatment, as indicated by biochemical and histological analyses. Our investigations revealed that the therapeutic potential of TMZ as an antifibrotic drug could be ascribed to its ability to directly target the epigenetic regulators lncRNA CBR3-AS1/ miRNA-29/ FIZZ1, which in turn resulted in the mitigation of lung fibrosis. Histological and immunohistochemical analyses further validated the potential antifibrotic effects of TMZ by mitigating the structural damage associated with fibrosis. Discussion: Taken together, our study showed for the first time the interplay between epigenetic lncRNAs CBR3-AS1 and miRNA-29 in lung fibrosis and demonstrated that FIZZ1 could be a downregulatory gene for lncRNA CBR3-AS1 and miRNA-29. Our key findings demonstrate that TMZ significantly reduces the expression of fibrotic, oxidative stress, immunomodulatory, and inflammatory markers, along with epigenetic regulators associated with lung fibrosis. This validates its potential as an effective antifibrotic agent by targeting the CBR3-AS1/miRNA-29/FIZZ1 axis.


Assuntos
Bleomicina , MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Trimetazidina , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Animais , Camundongos , Trimetazidina/farmacologia , Masculino , Camundongos Endogâmicos C57BL
2.
Biomolecules ; 14(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39199405

RESUMO

Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.


Assuntos
Biofilmes , Testes de Sensibilidade Microbiana , Cofator PQQ , Proteômica , Biofilmes/efeitos dos fármacos , Cofator PQQ/farmacologia , Cofator PQQ/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Simulação por Computador , Fungos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Antifúngicos/química
3.
RSC Adv ; 14(27): 19400-19427, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887636

RESUMO

Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 µg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 µg mL-1 and 3.86 µg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.

4.
Front Cell Neurosci ; 17: 1268126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026692

RESUMO

Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.

5.
Pharmaceutics ; 14(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35335908

RESUMO

Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain-like receptor 3 (NLRP3), interleukin-1ß (IL-1ß) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins.

6.
Pharmaceutics ; 13(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834174

RESUMO

In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure-function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA