RESUMO
Conducting polymers used in chemical sensors are attractive because of their ability to confer reversible properties controlled by the doping/de-doping process. Polyaniline (PANI) is one of the most prominent materials used due to its ease of synthesis, tailored properties, and higher stability. Here, PANI thin films deposited by the drop-casting method on fluorine-doped tin oxide (FTO) substrates were used in electrochemical and optical sensors for pH measurement. The response of the devices was correlated with the deposition parameters; namely, the volume of deposition solution dropped on the substrate and the concentration of the solution, which was determined by the weight ratio of polymer to solvent. The characterisation of the samples aimed to determine the structure-property relationship of the films and showed that the chemical properties, oxidation states, and protonation level are similar for all samples, as concluded from the cyclic voltammetry and UV-VIS spectroscopic analysis. The sensing performance of the PANI film is correlated with its relative physical properties, thickness, and surface roughness. The highest electrochemical sensitivity obtained was 127.3 ± 6.2 mV/pH, twice the Nernst limit-the highest pH sensitivity reported to our knowledge-from the thicker and rougher sample. The highest optical sensitivity, 0.45 ± 0.05 1/pH, was obtained from a less rough sample, which is desirable as it reduces light scattering and sample oxidation. The results presented demonstrate the importance of understanding the structure-property relationship of materials for optimised sensors and their potential applications where high-sensitivity pH measurement is required.
RESUMO
There is a recognized need for the development of cost-effective, stable, fast, and optimized novel materials for technological applications. Substantial research has been undertaken on the role of polymeric nanocomposites in sensing applications. However, the use of PANI-based nanocomposites in impedimetric and capacitive electrochemical sensors has yet to be understood. The present study aimed to explore the relationship between the sensitivity and linearity of electrochemical pH sensors and the composition of nanocomposites. Thin films of PANI/CeO2 and PANI/WO3 were deposited via spin coating for characterization and application during the electrochemical impedance and capacitance spectroscopy (EIS and ECS) transduction stages. The findings showed that the optimized performance of the devices was extended not only to the sensitivity but also to the linearity. An increase of 213% in the ECS sensitivity of the PANI/CeO2 compared to the metal oxide and an increase of 64% in the ECS linearity of the PANI/WO3 compared to the polymeric sensitivity were reported. This study identified the structure-property relationship of nanocomposite thin films of PANI with metal oxides for use in electrochemical sensors. The developed materials could be applied in devices to be used in different fields, such as food, environment, and biomedical monitoring.