Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 102(16): 6997-7005, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29909572

RESUMEN

ßγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca2+-binding proteins with a large diversity and variable properties in Ca2+ binding and stability. We have recently described a new phosphatidylinositol phospholipase C from Lysinibacillus sphaericus (LS-PIPLC) which was shown to efficiently remove phosphatidylinositol from crude vegetable oil. Here, the role of the C-terminal ßγ-crystallin domain of LS-PIPLC was analyzed in the context of the whole protein. A truncated protein in which the C-terminal ßγ-crystallin domain was deleted (LS-PIPLCΔCRY) is catalytically as efficient as the full-length protein (LS-PIPLC). However, the thermal and chemical stability of LS-PIPLCΔCRY are highly affected, demonstrating a stabilizing role for this domain. It is also shown that the presence of Ca2+ increases the thermal and chemical stability of the protein both in aqueous media and in oil, making LS-PIPLC an excellent candidate for use in industrial soybean oil degumming.


Asunto(s)
Bacillaceae/enzimología , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/genética , beta-Cristalinas/química , gamma-Cristalinas/química , Sitios de Unión , Calcio/metabolismo , Escherichia coli/genética , Mutación , Fosfoinositido Fosfolipasa C/biosíntesis , Estabilidad Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA