Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
1.
Atherosclerosis ; 396: 118544, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126769

RESUMEN

BACKGROUND AND AIMS: Inflammatory cells within atherosclerotic lesions secrete proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as a modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. METHODS: We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis were examined using mouse models. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. RESULTS: HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo, HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after administration to Apoe-/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr-/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. CONCLUSIONS: These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Lipoproteínas HDL , Animales , Aterosclerosis/patología , Aterosclerosis/prevención & control , Aterosclerosis/enzimología , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Lipoproteínas HDL/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica , Masculino , Elastasa Pancreática/metabolismo , Aorta/patología , Aorta/efectos de los fármacos , Aorta/enzimología , Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/metabolismo , Inhibidores de Proteasas/farmacología , alfa 1-Antitripsina/farmacología , alfa 1-Antitripsina/metabolismo
2.
Life Sci ; 353: 122923, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032690

RESUMEN

AIMS: Sepsis pathophysiology is complex and identifying effective treatments for sepsis remains challenging. The study aims to identify effective drugs and targets for sepsis through transcriptomic analysis of sepsis patients, repositioning analysis of compounds, and validation by animal models. MAIN METHODS: GSE185263 obtained from the GEO database that includes gene expression profiles of 44 healthy controls and 348 sepsis patients categorized by severity. Bioinformatic algorithms revealed the molecular, function, and immune characteristics of the sepsis, and constructed sepsis-related protein-protein interaction networks. Subsequently, Random Walk with Restart analysis was applied to identify candidate drugs for sepsis, which were tested in animal models for survival, inflammation, coagulation, and multi-organ damage. KEY FINDINGS: Our analysis found 1862 genes linked to sepsis development, enriched in functions like neutrophil extracellular trap formation (NETs) and complement/coagulation cascades. With disease progression, immune activation-associated cells were inhibited, while immune suppression-associated cells were activated. Next, the drug repositioning method identified candidate drugs, such as alpha-1 antitrypsin, that may play a therapeutic role by targeting neutrophil elastase (NE) to inhibit NETs. Animal experiments proved that alpha-1 antitrypsin treatment can improve the survival rate, reduce sepsis score, reduce the levels of inflammation markers in serum, and alleviate muti-organ morphological damage in mice with sepsis. The further results showed that α-1 antitrypsin can inhibit the NETs by suppressing the NE for the treatment of sepsis. SIGNIFICANCE: Alpha-1 antitrypsin acted on the NE to inhibit NETs thereby protecting mice from sepsis-induced inflammation and coagulation.


Asunto(s)
Coagulación Sanguínea , Trampas Extracelulares , Inflamación , Elastasa de Leucocito , Sepsis , alfa 1-Antitripsina , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Animales , Elastasa de Leucocito/metabolismo , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Ratones , alfa 1-Antitripsina/farmacología , alfa 1-Antitripsina/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Modelos Animales de Enfermedad
3.
Vascul Pharmacol ; 156: 107396, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38897556

RESUMEN

AIMS: Neutrophils perform various functions in a circadian-dependent manner; therefore, we investigated here whether the effect of alpha1-antitrypsin (AAT), used as augmentation therapy, is dependent on the neutrophil circadian clock. AAT is a vital regulator of neutrophil functions, and its qualitative and/or quantitative defects have significant implications for the development of respiratory diseases. METHODS: Whole blood from 12 healthy women age years, mean (SD) 29.92 (5.48) was collected twice daily, 8 h apart, and incubated for 30 min at 37 °C alone or with additions of 2 mg/ml AAT (Respreeza) and/or 5 µg/ml lipopolysaccharide (LPS) from Escherichia coli. Neutrophils were then isolated to examine gene expression, migration and phagocytosis. RESULTS: The expression of CD14, CD16, CXCR2 and SELL (encoding CD62L) genes was significantly higher while CDKN1A lower in the afternoon than in the morning neutrophils from untreated blood. Neutrophils isolated in the afternoon had higher migratory and phagocytic activity. Morning neutrophils isolated from AAT-pretreated blood showed higher expression of CXCR2 and SELL than those from untreated morning blood. Pretreatment of blood with AAT enhanced migratory properties of morning but not afternoon neutrophils. Of all genes analysed, only CXCL8 expression was strongly upregulated in morning and afternoon neutrophils isolated from LPS-pretreated blood, whereas CXCR2 expression was downregulated in afternoon neutrophils. The addition of AAT did not reverse the effects of LPS. SIGNIFICANCE: The circadian clock of myeloid cells may affect the effectiveness of various therapies, including AAT therapy used to treat patients with AAT deficiency, and needs further investigation.


Asunto(s)
Ritmo Circadiano , Lipopolisacáridos , Neutrófilos , Fagocitosis , Receptores de Interleucina-8B , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/farmacología , alfa 1-Antitripsina/sangre , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Lipopolisacáridos/farmacología , Femenino , Fagocitosis/efectos de los fármacos , Adulto , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/genética , Factores de Tiempo , Voluntarios Sanos , Receptores de Lipopolisacáridos/metabolismo , Receptores de Lipopolisacáridos/genética , Adulto Joven , Regulación de la Expresión Génica/efectos de los fármacos
4.
Laryngoscope ; 134(8): 3802-3806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38651563

RESUMEN

BACKGROUND: Most tympanic membrane (TM) perforations heal spontaneously, but 10%-20% remain chronic and might lead to impaired hearing and recurrent middle ear infections. Alpha1-antitrypsin (AAT) is a circulating tissue-protective protein that is elevated under inflammatory conditions and is currently indicated for genetic AAT deficiency. Recently, AAT has been shown to promote tissue remodeling and inflammatory resolution. OBJECTIVE: This study aimed to examine the effects of local clinical-grade AAT treatment on tissue repair in a mouse model of acute traumatic TM perforation. METHODS: Wild-type mice underwent unilateral TM perforation and were either left untreated or treated locally with human AAT (9 × 10-3 mL at 20 mg/mL on days 0, 1, and 2; n = 15/group). The perforations were evaluated macroscopically on a serial basis. Mice were sacrificed on various days post-injury, and TMs were excised for gene analysis by RT-PCR. RESULTS: There were no adverse reactions in hAAT-treated ears throughout the study period. Compared with untreated animals, TM closure occurred earlier in the treated group (days until full closure, median: 4 and 9, respectively). According to gene expression analysis, VEGF, TGFß, and collagen-5A1 were induced earlier in AAT-treated mice (day 4-5 compared with day 9). Additionally, IL-10 expression levels were higher and IL-6 levels were lower in treated versus untreated mice. CONCLUSION: A local tissue environment rich in AAT promotes early tissue repair in a perforated TM model both macroscopically and molecularly. Studies are underway to examine TM functionality and recombinant AAT formulations for micro-dosing in the format of a single local application. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3802-3806, 2024.


Asunto(s)
Modelos Animales de Enfermedad , Perforación de la Membrana Timpánica , Cicatrización de Heridas , alfa 1-Antitripsina , Animales , Ratones , Perforación de la Membrana Timpánica/tratamiento farmacológico , alfa 1-Antitripsina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Ratones Endogámicos C57BL
5.
J Med Chem ; 67(6): 5053-5063, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470817

RESUMEN

The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.


Asunto(s)
Cosmecéuticos , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacología , Péptidos/farmacología , Péptidos/química , Colágeno , Adyuvantes Inmunológicos
6.
Reprod Biol ; 24(1): 100858, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290226

RESUMEN

Preeclampsia (PE) is a life-threatening disease that severely harms pregnant women and infants' health but has a poorly understood etiology. Peptidomics can supply important information about the occurrence of diseases. However, application of peptidomics in preeclamptic placentas has never been reported. We conducted a comparative peptidomics analysis of PE placentas and performed bio-informatics analysis on differentially expressed peptides. Effects of differential peptide 405SPLFMGKVVNPTQK418 on the behaviors of trophoblasts and angiogenesis were assessed by CCK8, transwell assays, and tube network formation assays. And we also confirmed the role of peptide in the zebrafish xenograft model. A total of 3582 peptide were identified. 48 peptides were differentially expressed. Bioinformatics analysis indicated that precursor proteins of these differentially expressed peptides correlate with "complement and coagulation cascades," and "platelet activation" pathways. Of the 48 differential peptides, we found that peptide 405SPLFMGKVVNPTQK418 can significantly increase proliferation, migration of trophoblasts and stimulate angiogenesis of HUVECs in vitro and zebrafish model. These findings suggest peptidomes can aid in understanding the pathogenesis of PE more comprehensively. Peptide 405SPLFMGKVVNPTQK418 can be novel target and strategy to alleviate the condition of preeclampsia.


Asunto(s)
Preeclampsia , Pez Cebra , Animales , Humanos , Embarazo , Femenino , Preeclampsia/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Proteómica , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacología
7.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37814796

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Asunto(s)
Quimiocina CX3CL1 , Enfisema Pulmonar , Animales , Humanos , Ratones , alfa 1-Antitripsina/farmacología , Comunicación Celular , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Inflamación/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Monocitos , Enfisema Pulmonar/metabolismo
8.
J Pharm Biomed Anal ; 229: 115376, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37011552

RESUMEN

Imbalances between proteases and protease inhibitors have been associated with several pathological conditions including emphysema as seen in α1-antitrypsin deficiency. For this pathological condition, unimpeded neutrophil elastase activity has been ascribed a pivotal role in the destruction of lung tissue and thus in disease progression. Therefore, low, or non-quantifiable neutrophil elastase (NE) activity levels determined in bronchoalveolar lavage solutions indicate the success of α1-antitrypsin (AAT) augmentation therapy as NE activity will be erased. To overcome the known limitations of available elastase activity assays regarding sensitivity and selectivity, we developed a new elastase activity assay, which fundamentally relies on the highly specific complex formation between AAT and active elastase. Plate-bound AAT captured active elastase from the sample undergoing complex formation, followed by the immunological detection of human NE. This assay principle facilitated the measurement of low pM amounts of active human NE. The data of the assay performance check demonstrated adequate accuracy and precision profiles meeting currently accepted best practices for this activity assay, which can be classified as a ligand-binding assay. Furthermore, spike-recovery studies at low human NE levels, carried out for three human bronchoalveolar samples, resulted in recoveries within the 100 ± 20% range, while good linearity and parallelism of the samples' dilution-response curves was observed. Altogether, complemented by the data of selectivity and robustness studies and the accuracy and precision profile obtained in buffer, this newly developed human NE activity assay was demonstrated to perform accurately and precisely in clinically relevant samples.


Asunto(s)
Elastasa de Leucocito , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/farmacología , alfa 1-Antitripsina/uso terapéutico , Pulmón , Inhibidores de Proteasas , Neutrófilos
9.
J Surg Res ; 283: 953-964, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36915024

RESUMEN

INTRODUCTION: Endothelial dysfunction is a potential side effect of brain death (BD). Ischemia/reperfusion (IR) injury during heart transplantation may lead to further endothelial damage. Protective effects of alpha-1-antitrypsin (AAT), a human neutrophil serine protease inhibitor, have been demonstrated against IR injury. We hypothesized that AAT protects brain-dead rats' vascular grafts from IR injury. METHODS: Donor rats were subjected to BD by inflation of a subdural balloon. After 5.5 h, aortic rings were immediately mounted in organ baths (BD, n = 6 rats) or preserved in saline, supplemented either with vehicle (BD-IR, n = 8 rats) or AAT (BD-IR + AAT, n = 14 rats) for 24 h. During organ bath experiment, rings from both IR groups were exposed to hypochlorite to simulate warm reperfusion-associated endothelial injury. Endothelial function was measured ex vivo. Immunohistochemical staining for caspases was carried out and DNA-strand breaks were evaluated using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Data are presented as median (interquartile range). RESULTS: AAT improved IR-induced decreased maximum endothelium-dependent vasorelaxation to acetylcholine in the BD-IR + AAT aortas compared to the BD-IR group (BD: 83 (9-28) % versus BD-IR: 49 (39-60) % versus BD-IR + AAT: 64 (24-42) %, P < 0.05). Additionally, an increase in the rings' sensitivity to acetylcholine was noted after AAT (pD2-value: BD-IR + AAT: 7.35 (7.06-7.89) versus BD-IR: 6.96 (6.65-7.21), P < 0.05). Caspase-3, -8, -9, and -12 immunoreactivity and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells were significantly decreased by AAT. CONCLUSIONS: AAT alleviates endothelial dysfunction, prevents increased caspase-3, -8, -9, and -12 levels, and decreases apoptotic DNA breakage due to BD and IR injury. This suggests that AAT treatment may be therapeutically beneficial to reduce IR-induced vascular damage.


Asunto(s)
Muerte Encefálica , Daño por Reperfusión , alfa 1-Antitripsina , Animales , Humanos , Ratas , Encéfalo , Caspasa 3 , ADN Nucleotidilexotransferasa , Isquemia , Daño por Reperfusión/etiología , Daño por Reperfusión/prevención & control , alfa 1-Antitripsina/farmacología
10.
Biotechnol Bioeng ; 119(9): 2331-2344, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35508753

RESUMEN

Alpha-1-antitrypsin (A1AT) is a serine protease inhibitor which blocks the activity of serum proteases including neutrophil elastase to protect the lungs. Its deficiency is known to increase the risk of pulmonary emphysema as well as chronic obstructive pulmonary disease. Currently, the only treatment for patients with A1AT deficiency is weekly injection of plasma-purified A1AT. There is still today no commercial source of therapeutic recombinant A1AT, likely due to significant differences in expression host-specific glycosylation profile and/or high costs associated with the huge therapeutic dose needed. Accordingly, we aimed to produce high levels of recombinant wild-type A1AT, as well as a mutated protein (mutein) version for increased oxidation resistance, with N-glycans analogous to human plasma-derived A1AT. To achieve this, we disrupted two endogenous glycosyltransferase genes controlling core α-1,6-fucosylation (Fut8) and α-2,3-sialylation (ST3Gal4) in CHO cells using CRISPR/Cas9 technology, followed by overexpression of human α-2,6-sialyltransferase (ST6Gal1) using a cumate-inducible expression system. Volumetric A1AT productivity obtained from stable CHO pools was 2.5- to 6.5-fold higher with the cumate-inducible CR5 promoter compared to five strong constitutive promoters. Using the CR5 promoter, glycoengineered stable CHO pools were able to produce over 2.1 and 2.8 g/L of wild-type and mutein forms of A1AT, respectively, with N-glycans analogous to the plasma-derived clinical product Prolastin-C. Supplementation of N-acetylmannosamine to the cell culture media during production increased the overall sialylation of A1AT as well as the proportion of bi-antennary and disialylated A2G2S2 N-glycans. These purified recombinant A1AT proteins showed in vitro inhibitory activity equivalent to Prolastin-C and substitution of methionine residues 351 and 358 with valines rendered A1AT significantly more resistant to oxidation. The recombinant A1AT mutein bearing an improved oxidation resistance described in this study could represent a viable biobetter drug, offering a safe and more stable alternative for augmentation therapy.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Polisacáridos , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacología , Deficiencia de alfa 1-Antitripsina/tratamiento farmacológico
11.
Chem Phys Lipids ; 243: 105175, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063423

RESUMEN

INTRODUCTION: The effect of nutrition on inflammation and breast cancer (BC) prognosis is still inconclusive. Mechanism of data suggests that different types of fatty acids (FAs) play an essential role in carcinogenesis, and binding of alpha 1 antitrypsin (A1AT) may modulate carcinogenesis. The increased expression in the bound form of A1AT and release of Angiopoietin-like protein 4 (Angptl4) targets the gene of peroxisome proliferator-activated receptor-gamma (PPAR-γ). Our aim of the study was to compare the effect of FA-free (A1AT-0) and FAs bound forms of A1AT on levels of IL-1ß, PPAR-gamma, and Angplt4 in breast cancer and control women. METHODOLOGY: 10 women with breast cancer and ten control women within the age group 25-60 years with normal (Pi) M allele A1AT were recruited. Mononuclear cells were isolated and treated with different A1AT and FAs on the various combinations (linoleic acid, alpha-linolenic acid) for time-dependent study (2,4,18 and 24 h) and analyzed for the interleukin -1 beta(IL-1b), PPAR-gamma, and Angiopoietin-like protein 4 (Angptl4) expression by using ELISA method and gas chromatography for analyzing FAs. One-way ANOVA combined with multiple comparisons is used to compare the means. RESULTS: 100% of the study subjects were homozygous for the normal allele of A1AT. Time-dependent effects of A1AT and A1AT conjugated fatty acids on IL-I b, PPAR-g and Angptl4 showed statistically significant P = 0.07, P = 0.001, and P = 0.02 respectively, compared to those of the former study subjects. But within the groups, PPAR-g levels in case group (F(15,40)1.606, P = 0.003) and Angptl4 in the control group (F(15,32)0.64, P = 0.043) differed significantly. CONCLUSION: To the best of our knowledge, it's the first kind of study, and we speculate that the A1AT complex with different types of FAs results in a new form of A1AT having a solid capability to regulate the inflammation-induced synthesis, processing, and release of an active form of IL-1ß. Our experimental data shows that the anti-inflammatory property of A1AT combined FAs likely to be mediated PPAR γand Angptl4 activation, thereby inhibiting the IL-1b. These findings may be worth assessing BC's biological effects and therapeutic effectiveness.


Asunto(s)
Neoplasias de la Mama , alfa 1-Antitripsina , Adulto , Proteína 4 Similar a la Angiopoyetina , Carcinogénesis , Ácidos Grasos , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , PPAR gamma , Proyectos Piloto , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacología
12.
Drug Dev Res ; 83(3): 622-627, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34677831

RESUMEN

Several comorbidities including diabetes, immune deficiency, and chronic respiratory disorders increase the risk of severe Covid-19 and fatalities among SARS-CoV-2 infected individuals. Severe Covid-19 risk among diabetes patients may reflect reduced immune response to viral infections. SARS-CoV-2 initially infects respiratory tract epithelial cells by binding to the host cell membrane ACE2, followed by proteolytic priming for cell entry by the host cell membrane serine protease TMPRSS2. Additionally, the protease FURIN facilitates cell exit of mature SARS-CoV-2 virions. Alpha-1 antitrypsin (AAT), the major plasma serine protease inhibitor, encoded by SERPINA1, is known to promote immune response to viral infections. AAT inhibits neutrophil elastase, a key inflammatory serine protease implicated in alveolar cell damage during respiratory infections, and AAT deficiency is associated with susceptibility to lung infections. AAT is implicated in Covid-19 as it inhibits TMPRSS2, a protease essential for SARS-CoV-2 cell entry. Here we show that treatment of A549 human lung epithelial cells for 7 days with 25 mM d-galactose, an inducer of diabetic-like and oxidative stress cellular phenotypes, leads to increased mRNA levels of ACE2, TMPRSS2, and FURIN, along with reduced SERPINA1 mRNA. Together, the dysregulated transcription of these genes following d-galactose treatment suggests that chronic diabetic-like conditions may facilitate SARS-CoV-2 infection of lung epithelial cells. Our findings may in part explain the higher severe Covid-19 risk in diabetes, and highlight the need to develop special treatment protocols for diabetic patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Furina , Enzima Convertidora de Angiotensina 2 , Células Epiteliales/metabolismo , Furina/genética , Furina/metabolismo , Galactosa , Humanos , Pulmón/metabolismo , ARN Mensajero/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacología
13.
Angew Chem Int Ed Engl ; 61(6): e202115241, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34897938

RESUMEN

Human alpha-1-antitrypsin (A1AT), a native serine-protease inhibitor that protects tissue damage from excessive protease activities, is used as an augmentation therapy to treat A1AT-deficienct patients. However, A1AT is sensitive to oxidation-mediated deactivation and has a short circulating half-life. Currently, there is no method that can effectively protect therapeutic proteins from oxidative damage in vivo. Here we developed a novel biocompatible selenopolypeptide and site-specifically conjugated it with A1AT. The conjugated A1AT fully retained its inhibitory activity on neutrophil elastase, enhanced oxidation resistance, extended the serum half-life, and afforded long-lasting protective efficacy in a mouse model of acute lung injury. These results demonstrated that conjugating A1AT with the designed selenopolymer is a viable strategy to improve its pharmacological properties, which could potentially further be applied to a variety of oxidation sensitive biotherapeutics.


Asunto(s)
Materiales Biocompatibles/farmacología , Elastasa de Leucocito/antagonistas & inhibidores , Péptidos/farmacología , Selenio/farmacología , Inhibidores de Serina Proteinasa/farmacología , alfa 1-Antitripsina/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Humanos , Elastasa de Leucocito/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Péptidos/química , Selenio/química , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , alfa 1-Antitripsina/química
14.
Respir Res ; 22(1): 295, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789247

RESUMEN

BACKGROUND: α1-Antitrypsin (AAT) is an acute phase glycoprotein, a multifunctional protein with proteinase inhibitory, anti-inflammatory and cytoprotective properties. Both preclinical and clinical experiences show that the therapy with plasma purified AAT is beneficial for a broad spectrum of inflammatory conditions. The potential effects of AAT therapy have recently been highlighted in lung transplantation (LuTx) as well. METHODS: We used a murine fully mismatched orthotopic single LuTx model (BALB/CJ as donors and C57BL/6 as recipients). Human AAT preparations (5 mg, n = 10) or vehicle (n = 5) were injected to the recipients subcutaneously prior to and intraperitoneally immediately after the LuTx. No immune suppressive drugs were administered. Three days after the transplantation, the mice were sacrificed, and biological samples were assessed. RESULTS: Histological analysis revealed significantly more severe acute rejection in the transplanted lungs of controls than in AAT treated mice (p < 0.05). The proportion of neutrophil granulocytes, B cells and the total T helper cell populations did not differ between two groups. There was no significant difference in serum CXCL1 (KC) levels. However, when compared to controls, human AAT was detectable in the serum of mice treated with AAT and these mice had a higher serum anti-elastase activity, and significantly lower proportion of Th1 and Th17 among all Th cells. Cleaved caspase-3-positive cells were scarce but significantly less abundant in allografts from recipients treated with AAT as compared to those treated with vehicle. CONCLUSION: Therapy with AAT suppresses the acute rejection after LuTx in a mouse model. The beneficial effects seem to involve anti-protease and immunomodulatory activities of AAT.


Asunto(s)
Rechazo de Injerto/tratamiento farmacológico , alfa 1-Antitripsina/farmacología , Enfermedad Aguda , Aloinjertos , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Rechazo de Injerto/patología , Trasplante de Pulmón , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Inhibidores de Serina Proteinasa/farmacología
15.
Am J Physiol Endocrinol Metab ; 321(4): E560-E570, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34486403

RESUMEN

Neutrophils accumulate in insulin-sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet-induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high-fat diet (HFD) were randomized to receive intraperitoneal injections three times weekly of either Prolastin (human A1AT; 2 mg) or vehicle (PBS) for 10 wk. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance, or insulin sensitivity in chow-fed mice. In contrast, Prolastin treatment attenuated HFD-induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473 phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin resistance by impairing insulin-induced IRS-1 signaling.NEW & NOTEWORTHY Neutrophils accumulate in peripheral tissues during obesity and are critical coordinators of tissue inflammatory responses. Here, we provide evidence that inhibition of the primary neutrophil protease, neutrophil elastase, with α1-antitrypsin A (A1AT) can improve insulin sensitivity and glucose homeostasis of mice fed a high-fat diet. This was attributed to improved insulin-induced IRS-1 phosphorylation in white adipose tissue and provides further support for a role of neutrophils in mediating diet-induced peripheral tissue insulin resistance.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Dieta Alta en Grasa , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores , alfa 1-Antitripsina/farmacología , Células 3T3-L1 , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal
16.
Sci Rep ; 11(1): 15849, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349162

RESUMEN

Extracorporeal membrane oxygenation (ECMO) is a life-saving intervention for patients suffering from respiratory or cardiac failure. The ECMO-associated morbidity and mortality depends to a large extent on the underlying disease and is often related to systemic inflammation, consecutive immune paralysis and sepsis. Here we tested the hypothesis that human α1-antitrypsin (SERPINA1) due to its anti-protease and anti-inflammatory functions may attenuate ECMO-induced inflammation. We specifically aimed to test whether intravenous treatment with α1-antitrypsin reduces the release of cytokines in response to 2 h of experimental ECMO. Adult rats were intravenously infused with α1-antitrypsin immediately before starting veno-arterial ECMO. We measured selected pro- and anti-inflammatory cytokines and found, that systemic levels of tumor necrosis factor-α, interleukin-6 and interleukin-10 increase during experimental ECMO. As tachycardia and hypertension developed in response to α1-antitrypsin, a single additional bolus of fentanyl and midazolam was given. Treatment with α1-antitrypsin and higher sedative doses reduced all cytokine levels investigated. We suggest that α1-antitrypsin might have the potential to protect against both ECMO-induced systemic inflammation and immune paralysis. More studies are needed to corroborate our findings, to clarify the mechanisms by which α1-antitrypsin inhibits cytokine release in vivo and to explore the potential application of α1-antitrypsin in clinical ECMO.


Asunto(s)
Gasto Cardíaco/efectos de los fármacos , Citocinas/metabolismo , Oxigenación por Membrana Extracorpórea/métodos , Hemodinámica , Inhibidores de Tripsina/farmacología , alfa 1-Antitripsina/farmacología , Animales , Masculino , Ratas , Ratas Endogámicas Lew
17.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360706

RESUMEN

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Asunto(s)
Antiinflamatorios/farmacología , Leucocitos Mononucleares/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , alfa 1-Antitripsina/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/inmunología , Células CHO , COVID-19/terapia , Células Cultivadas , Cricetulus , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Lipopolisacáridos/inmunología , Lipopolisacáridos/toxicidad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , alfa 1-Antitripsina/química , alfa 1-Antitripsina/inmunología
18.
FASEB J ; 35(5): e21472, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33788977

RESUMEN

While new treatments have been developed to control joint disease in rheumatoid arthritis, they are partially effective and do not promote structural repair of cartilage. Following an initial identification of α-1-Antitrypsin (AAT) during the resolution phase of acute inflammation, we report here the properties of this protein in the context of cartilage protection, joint inflammation, and associated pain behavior. Intra-articular and systemic administration of AAT reversed joint inflammation, nociception, and cartilage degradation in the KBxN serum and neutrophil elastase models of arthritis. Ex vivo analyses of arthritic joints revealed that AAT promoted transcription of col2a1, acan, and sox9 and downregulated mmp13 and adamts5 gene expression. In vitro studies using human chondrocytes revealed that SERPINA1 transfection and rAAT protein promoted chondrogenic differentiation through activation of PKA-dependent CREB signaling and inhibition of Wnt/ß-catenin pathways. Thus, AAT is endowed with anti-inflammatory, analgesic, and chondroprotective properties that are partially inter-related. We propose that AAT could be developed for new therapeutic strategies to reduce arthritic pain and repair damaged cartilage.


Asunto(s)
Artritis Experimental/complicaciones , Condrocitos/citología , Condrogénesis , Inflamación/prevención & control , Dolor/prevención & control , alfa 1-Antitripsina/farmacología , Animales , Condrocitos/efectos de los fármacos , Inflamación/etiología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/etiología , Dolor/patología , Ratas , Ratas Wistar
19.
Pulm Pharmacol Ther ; 68: 102020, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33774155

RESUMEN

The acute phase protein α1-antitrypsin (AAT) inhibits numerous proteases, specifically neutrophil elastase. Patients with an AAT deficiency due to mutations frequently develop early onset emphysema. The commercial preparations of human plasma AAT are clinically used as biopharmaceuticals to protect the lung tissue of AAT-deficient patients from damage caused by neutrophil elastase. Accordingly, preparations of AAT are validated for their anti-elastase activity. However, several anti-inflammatory effects of AAT were described, some of them being independent from its anti-protease function. We recently demonstrated that AAT isolated from the blood of healthy persons efficiently inhibits the ATP-induced release of interleukin-1ß by human monocytes. This finding is of therapeutic relevance, because IL-1ß plays an important role in numerous debilitating and life-threatening inflammatory diseases. As anti-inflammatory functions of AAT are of increasing clinical interest, we compared the potential of two widely used AAT preparations, Prolastin® and Respreeza®, to inhibit the ATP-induced release of IL-1ß using human monocytic U937 cells. We detected marked functional differences between both medicaments. The AAT preparation Respreeza® is less active compared to Prolastin® regarding the inhibition of the ATP-induced release of monocytic IL-1ß. Chemical oxidation of Respreeza® restored this anti-inflammatory activity, while destroying its anti-protease function. Our data suggest that the anti-inflammatory potential and the anti-protease function of AAT can be fully uncoupled. In the light of the increasing clinical interest in anti-inflammatory functions of AAT, commercial AAT preparations should be carefully reinvestigated and optimized to preserve the dual anti-protease and anti-inflammatory activity of native AAT.


Asunto(s)
Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Adenosina Trifosfato , Humanos , Interleucina-1beta , Monocitos , alfa 1-Antitripsina/farmacología , Deficiencia de alfa 1-Antitripsina/tratamiento farmacológico
20.
Nat Commun ; 12(1): 1726, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741941

RESUMEN

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , alfa 1-Antitripsina/farmacología , Anticuerpos Antivirales/sangre , Antivirales/farmacología , COVID-19/sangre , Células CACO-2 , Humanos , Inmunoglobulina G/sangre , Simulación del Acoplamiento Molecular , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA