RESUMEN
Modified synthetic N-POMC(1-28) without disulfide bridges has been shown to act as an adrenal mitogen. Cyclins and their inhibitors are the major cell cycle controls, but in the adrenal cortex the effect of ACTH and N-POMC on the expression of these proteins remains unclear. In this work, we evaluate the effect of different synthetic N-POMC peptides on the S-phase of the cell cycle. In addition, we examine the cyclin E expression in rat adrenal cortex. Rats treated with dexamethasone were injected with ACTH and/or synthetic modified N-POMC and/or synthetic N-POMC with disulfide bridges. DNA synthesis was determined by BrdU incorporation and protein expression was analyzed by immunoblotting and immunohistochemistry. The results showed that similarly to modified N-POMC without disulfide bridges, administration of synthetic N-POMC with disulfide bridges and the combination of ACTH and N-POMC promoted an increase of BrdU-positive nuclei in adrenal cortex. However, the proliferative effect of N-POMC was comparable to that of ACTH only in the zona glomerulosa. An increase in cyclin E expression was observed 6 h after N-POMC treatment in the outer fraction of the adrenal cortex, in agreement with immunohistochemical findings in the zona glomerulosa. In summary, the effect of synthetic N-POMC with disulfide bridges was similar to modified synthetic N-POMC, increasing proliferation in the adrenal cortex, confirming previous evidence that disulfide bridges are not essential to the N-POMC mitogenic effect. Moreover, cyclin E appears to be involved in the N-POMC- and ACTH-stimulated proliferation in the zona glomerulosa of the adrenal cortex.
Asunto(s)
Corteza Suprarrenal/citología , Corteza Suprarrenal/efectos de los fármacos , Ciclina E/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Proopiomelanocortina/farmacología , Corteza Suprarrenal/metabolismo , Hormona Adrenocorticotrópica/farmacología , Animales , Bromodesoxiuridina/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Dexametasona/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Zona Fascicular/citología , Zona Fascicular/efectos de los fármacos , Zona Fascicular/metabolismo , Zona Glomerular/citología , Zona Glomerular/efectos de los fármacos , Zona Glomerular/metabolismo , Zona Reticular/citología , Zona Reticular/efectos de los fármacos , Zona Reticular/metabolismoRESUMEN
In vitro and in vivo studies have suggested that the expression of the early response genes for Jun and Fos proteins plays an important role in adrenal cell proliferation. In order to study the expression pattern of the activating protein-1 (AP-1) family of oncogenes in the adrenal gland, we have used immunohistochemistry to localize Jun and Fos protein expression in rat adrenal cortex infused in situ with adrenocorticotropic hormone (ACTH), fibroblast growth factor 2 (FGF2), or both. The expression of AP-1 factors has been found to be correlated with in vivo ACTH and FGF2 proliferation in rats treated with dexamethasone and bromodeoxyuridine (BrdU). Induction of c-Jun and c-Fos in the zona fasciculata and of FosB in the zona reticularis suggests that, after ACTH stimulation, these proteins are the main AP-1 components in these zones. In vivo, ACTH increases BrdU-positive cells in the zona fasciculata and zona reticularis suggesting that the composition of AP-1 complexes in these zones is correlated with proliferation. Patterns of Fos and Jun induction by FGF2 do not resemble those after ACTH induction. However, in isolation, neither affects the zona glomerulosa. In the zona fasciculata, and more so in the zona reticularis, FGF2 modulates responses to ACTH, reducing the numbers of Jun-positive cells, Fos-positive cells, and DNA synthesis. This indicates that FGF2 antagonizes ACTH, and that ACTH thus controls the trophic effect independently of exogenous FGF2. Our results implicate the AP-1 family of transcription factors in the regulation of cell progression and the control of ACTH-induced proliferation in the zona fasciculata and zona reticularis.