Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.983
Filtrar
1.
J Ovarian Res ; 17(1): 181, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244585

RESUMEN

Ovarian cancer is the second most common and lethal gynecologic malignancy. Among natural product-based therapy, the honeybee products, particularly propolis, serve a valuable source contributing directly to human nutrition and health.In the present study, we determined the chemical composition of different types of propolis originating from Egypt, Germany and France using liquid chromatography-tandem mass spectrometry. The compounds identified belong to different metabolite classes, including flavonoids, cinnamic acid, chalcones, terpenoids, phenolic lipids, stilbenes, phenolic compounds, carbohydrates, vitamins, coumarins, polyprenylated benzophenone, benzoic acids, fatty acid methyl ester, and coumaric acid, and their derivatives. The most active extract is from France then Egypt and Germany.Afterwards, we treated the human ovarian cancer cells, OVCAR4, with different concentrations (1-400 µg/mL) of variable propolis types supplemented or not with vitamin D (0.0015-0.15 µg/mL) in order to evaluate the efficacy and the cytotoxic activities of our local P as compared to other types collected from different geographic regions. Importantly, the combinatorial treatment of OVCAR4 cancer cells with propolis and vitamin D in the same concentration ranges resulted in enhanced cell viability inhibition. Furthermore, such co-supplementation with vitamin D inhibits predominately the proliferative activity of cell population with the French propolis type as manifested by Ki67 expression, while it reduces considerably its expression, particularly with the German type, followed by the Egyptian one.Nowadays, scientists are interested by natural products which have risen to the forefront of drug discovery. Chemically characterized propolis showing cell viability inhibition and antiproliferative potential seems a valuable extract for further consideration as anti-carcinogenic agent.


Asunto(s)
Neoplasias Ováricas , Própolis , Vitamina D , Própolis/farmacología , Própolis/química , Humanos , Femenino , Vitamina D/farmacología , Vitamina D/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Egipto , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos
2.
Drug Des Devel Ther ; 18: 3903-3919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224902

RESUMEN

Purpose: Bone loss is a common complication of type 2 diabetes mellitus (T2DM). Circadian rhythms play a significant role in T2DM and bone remodeling. Eldecalcitol (ED-71), a novel active vitamin D analog, has shown promise in ameliorating T2DM. We aimed to investigate whether the circadian rhythm coregulator BMAL1 mediates the anti-osteoporotic effect of ED-71 in T2DM and its associated mechanisms. Methods: A T2DM mouse model was established using high-fat diet (HDF) and streptozotocin (STZ) injection, and blood glucose levels were monitored weekly. HE staining, Masson staining, and Micro-CT were performed to assess the changes in bone mass. IHC staining and IF staining were used to detect osteoblast status and BMAL1 expression and RT-qPCR was applied to detect the change of oxidative stress factors. In vitro, high glucose (HG) stimulation was used to simulate the cell environment in T2DM. RT-qPCR, Western blot, IF, ALP staining and AR staining were used to detect osteogenic differentiation and SIRT1/GSK3ß signaling pathway. DCFH-DA staining was used to detect reactive oxygen species (ROS) levels. Results: ED-71 increased bone mass and promoted osteogenesis in T2DM mice. Moreover, ED-71 inhibited oxidative stress and promoted BMAL1 expression in osteoblasts The addition of STL1267, an agonist of the BMAL1 transcriptional repressor protein REV-ERB, reversed the inhibitory effect of ED-71 on oxidative stress and the promotional effect on osteogenic differentiation. In addition, ED-71 facilitated SIRT1 expression and reduced GSK3ß activity. The inhibition of SIRT1 with EX527 partially attenuated ED-71's effects, whereas the GSK3ß inhibitor LiCl further enhanced ED-71's positive effects on BMAL1 expression. Conclusion: ED-71 ameliorates bone loss in T2DM by upregulating the circadian rhythm coregulator BMAL1 and promoting osteogenesis through inhibition of oxidative stress. The SIRT1/GSK3ß signaling pathway is involved in the regulation of BMAL1.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones Endogámicos C57BL , Osteogénesis , Regulación hacia Arriba , Animales , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Osteogénesis/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ritmo Circadiano/efectos de los fármacos , Estreptozocina , Vitamina D/farmacología , Vitamina D/análogos & derivados , Dieta Alta en Grasa , Células Cultivadas
3.
Eur J Orthod ; 46(5)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39225083

RESUMEN

BACKGROUND: Orchestration of tooth movement necessitates an equilibrium of bone synthesis and resorption. Vitamin D, through receptor-mediated actions, regulates the differentiation and maturation of osteoblasts and also induces osteoclastogenesis, maintaining this equilibrium. OBJECTIVE: To analyze the impact of vitamin D in orthodontic tooth movement (OTM). SEARCH METHOD: A comprehensive exploration of the existing literature was conducted by systematic search through seven e-databases. SELECTION CRITERIA: The criteria for inclusion were established using the PICO format: Orthodontic patients treated with fixed appliance (P), administered with vitamin D3 (I), collated with appropriate control groups (C), with tooth movement as the primary outcome and root resorption, anchorage loss, gingival crevicular fluid (GCF) volume, pain perception, and alveolar bone density as the secondary outcome (O). DATA COLLECTION AND ANALYSIS: After an extensive database search, 251 articles were obtained. Six articles were chosen following a stringent selection using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The critical appraisal of randomized control trials (RCTs) involved the meticulous application of the RoB 2 tool. The quantitative synthesis incorporated a subset of six articles only. RESULTS: In the meta-analysis investigating the influence of vitamin D on OTM, a notable disparity was evident between the vitamin D and control groups. Specifically, the standardized mean difference (SMD) stood at 1.43, accompanied by a 95% confidence interval (CI) ranging from 0.691 to 2.169 (P = .00154). For root resorption, the SMD was recorded at -0.51, with a 95% CI spanning from -3.051 to 2.031 (P = .11). CONCLUSIONS: The rate of tooth movement was enhanced by systemic and local administration of vitamin D. However, the inadequacy of available data is a hindrance in determining conclusively the impact of vitamin D on the extent of root resorption. The resolution of this quandary needs future human studies devoted toward investigating the influence of vitamin D in the realms of OTM and associated root resorption, thereby providing a definitive elucidation. REGISTRATION DETAILS: Prospero- CRD42023491783.


Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto , Resorción Radicular , Técnicas de Movimiento Dental , Vitamina D , Humanos , Técnicas de Movimiento Dental/métodos , Vitamina D/uso terapéutico , Vitamina D/farmacología , Resorción Radicular/etiología
4.
Immun Inflamm Dis ; 12(9): e1330, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267468

RESUMEN

INTRODUCTION: Chagas disease is caused by the protozoan Trypanosoma cruzi and is clinically divided into acute and chronic phases. Chronic Chagas cardiomyopathy is the most studied manifestation of the disease. Vitamin D deficiency has been suggested as a risk factor for cardiovascular disease. No studies demonstrate the action of this hormone in the cells of patients with chronic Chagas heart disease. OBJECTIVE: To evaluate the in vitro immunomodulatory effect of vitamin D on peripheral blood mononuclear cells of patients with the different chronic clinical forms of Chagas disease. Evaluating vitamin D's in vitro effect on blood cells by producing cytokines. METHODS: Thirteen patients of the undetermined form (IND), 13 of the mild cardiac form (CARD1) and 14 of the severe cardiac form (CARD2) of Chagas disease, and 12 with idiopathic heart disease (CARDid) were included. The cells obtained from peripheral blood were treated in vitro with vitamin D (1 × 10-7 M) for 24 h and cytokines were dosed in the culture supernatant. RESULTS: Although it was not possible to demonstrate statistically significant differences between the groups studied, our data showed that the cells treated with vitamin D modify (p < .05) the production of interferon-γ (IFN-γ) (decrease in IND), tumor necrosis factor-α (TNF-α) (decreased in CARD1 and CARDid), interleukin (IL)-6 (increased in all groups), and IL-10 (decreased in CARD1, CARD2, and CARDid) when compared to untreated cells. CONCLUSION: In vitro treatment with vitamin D distinctly modulated the production of cytokines by mononuclear cells of peripheral blood among patients with chronic and indeterminate cardiac clinical forms of Chagas disease.


Asunto(s)
Citocinas , Leucocitos Mononucleares , Vitamina D , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Vitamina D/farmacología , Masculino , Femenino , Persona de Mediana Edad , Citocinas/metabolismo , Adulto , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/inmunología , Enfermedad Crónica , Trypanosoma cruzi/inmunología , Trypanosoma cruzi/efectos de los fármacos , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/parasitología , Anciano , Células Cultivadas
5.
Cells ; 13(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273035

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.


Asunto(s)
Receptores Acoplados a Proteínas G , Células Madre , Vitamina D , Animales , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología , Vitamina D/farmacología , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Ratones , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Regeneración/efectos de los fármacos , Ratones Endogámicos C57BL , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/patología , Intestinos/efectos de los fármacos
6.
Nutrients ; 16(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39275253

RESUMEN

Vitamin D deficiency is a global problem. Vitamin D, the vitamin D receptor, and its enzymes are found throughout neuronal, ependymal, and glial cells in the brain and are implicated in certain processes and mechanisms in the brain. To investigate the processes affected by vitamin D deficiency in adults, we studied vitamin D deficient, control, and supplemented diets over 6 weeks in male and female C57Bl/6 mice. The effect of the vitamin D diets on proliferation in the neurogenic niches, changes in glial cells, as well as on memory, locomotion, and anxiety-like behavior, was investigated. Six weeks on a deficient diet was adequate time to reach deficiency. However, vitamin D deficiency and supplementation did not affect proliferation, neurogenesis, or astrocyte changes, and this was reflected on behavioral measures. Supplementation only affected microglia in the dentate gyrus of female mice. Indicating that vitamin D deficiency and supplementation do not affect these processes over a 6-week period.


Asunto(s)
Cognición , Suplementos Dietéticos , Ratones Endogámicos C57BL , Neurogénesis , Deficiencia de Vitamina D , Vitamina D , Animales , Deficiencia de Vitamina D/complicaciones , Femenino , Masculino , Vitamina D/farmacología , Ratones , Proliferación Celular , Conducta Animal , Astrocitos/metabolismo , Giro Dentado , Ansiedad , Encéfalo/metabolismo , Memoria
7.
Nutrients ; 16(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39275306

RESUMEN

The extracellular matrix of cartilage primarily constitutes of collagen and aggrecan. Cartilage degradation starts with aggrecan loss in osteoarthritis (OA). Vitamin D (VD) plays an essential role in several inflammation-related diseases and can protect the collagen in cartilage during OA. The present study focused on the role of VD in aggrecan turnover of human articular chondrocytes treated with tumor necrosis factor α (TNF-α) and the possible mechanism. Treatment with different doses of VD and different periods of intervention with TNF-α and TGF-ß1 receptor (TGFßR1) inhibitor SB525334 were investigated. The viability of human chondrocytes and extracellular secretion of TGF-ß1 were measured. The expression of intracellular TGFßR1 and VD receptor was examined. Transcriptional and translational levels of aggrecan and the related metabolic factors were analyzed. The results showed that TNF-α markedly reduced the viability, TGFßR1 expressions and aggrecan levels of human chondrocytes, and increased disintegrin and metalloproteinase with thrombospondin motifs. The alterations were partially inhibited by VD treatment. Furthermore, the effects of VD were blocked by the TGFßR1 inhibitor SB525334 in TNF-α-treated cells. VD may prevent proteoglycan loss due to TNF-α via TGF-ß1 signaling in human chondrocytes.


Asunto(s)
Agrecanos , Cartílago Articular , Condrocitos , Proteoglicanos , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Factor de Necrosis Tumoral alfa , Vitamina D , Humanos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Agrecanos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina D/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/farmacología , Cartílago Articular/metabolismo , Cartílago Articular/efectos de los fármacos , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Osteoartritis/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptores de Calcitriol/metabolismo
8.
Physiol Res ; 73(4): 609-619, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39264081

RESUMEN

Gestational diabetes mellitus (GDM) is a common disease during pregnancy that has adverse effects on both the mother and fetus. There are currently rare researches on the effect of vitamin supplementation on GDM pregnant mother and their offspring on animal and cell levels systematically. This work supplemented the GDM pregnant mouse model with vitamin D and found that vitamin D can effectively alleviate the hyperglycemia in GDM pregnant mice, increase blood insulin and adiponectin concentrations, and improve GTT and ITT in pregnant mice. In addition, vitamin D can reduce the incidence of death and high birth weight of offspring caused by GDM. The offspring of GDM pregnant mice had higher blood glucose levels in the first 5 weeks after birth compared to the normal group, and then returned to normal levels. Vitamin D can alleviate abnormal glucose metabolism in newborn mice. The therapeutic effect exhibited by vitamin D may be due to their anti-inflammatory effects, as vitamin D supplementation significantly reduces the levels of TFN-?, MCP-1, IL-1? and IL-8 in the blood. Vitamin D also regulates liver lipid metabolism, resulting in a decrease in liver lipid accumulation and a decrease in blood triglycerides (TG) and cholesterol (CHO). The results of this study demonstrate that vitamin D supplementation can serve as an effective treatment strategy for alleviating GDM symptoms. Keywords: Gestational diabetes mellitus, Vitamin D, Glucose metabolism, Anti-inflammatory.


Asunto(s)
Glucemia , Diabetes Gestacional , Modelos Animales de Enfermedad , Vitamina D , Animales , Diabetes Gestacional/metabolismo , Diabetes Gestacional/prevención & control , Diabetes Gestacional/sangre , Diabetes Gestacional/tratamiento farmacológico , Femenino , Embarazo , Vitamina D/farmacología , Vitamina D/uso terapéutico , Ratones , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Glucosa/metabolismo , Suplementos Dietéticos , Ratones Endogámicos C57BL
9.
Mol Biol Rep ; 51(1): 969, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249564

RESUMEN

BACKGROUND: Mitochondria are known to be involved in mediating the calorigenic effects of thyroid hormones. With an abundance of these hormones, alterations in energy metabolism and cellular respiration take place, leading to the development of cardiac hypertrophy. Vitamin D has recently gained attention due to its involvement in the regulation of mitochondrial function, demonstrating promising potential in preserving the integrity and functionality of the mitochondrial network. The present study aimed to investigate the therapeutic potential of Vitamin D on cardiac hypertrophy induced by hyperthyroidism, with a focus on the contributions of mitophagy and apoptosis as possible underlying molecular mechanisms. METHODS AND RESULTS: The rats were divided into three groups: control; hyperthyroid; hyperthyroid + Vitamin D. Hyperthyroidism was induced by Levothyroxine administration for four weeks. Serum thyroid hormones levels, myocardial damage markers, cardiac hypertrophy indices, and histological examination were assessed. The assessment of Malondialdehyde (MDA) levels and the expression of the related genes were conducted using heart tissue samples. Vitamin D pretreatment exhibited a significant improvement in the hyperthyroidism-induced decline in markers indicative of myocardial damage, oxidative stress, and indices of cardiac hypertrophy. Vitamin D pretreatment also improved the downregulation observed in myocardial expression levels of genes involved in the regulation of mitophagy and apoptosis, including PTEN putative kinase 1 (PINK1), Mitofusin-2 (MFN2), Dynamin-related Protein 1 (DRP1), and B cell lymphoma-2 (Bcl-2), induced by hyperthyroidism. CONCLUSIONS: These results suggest that supplementation with Vitamin D could be advantageous in preventing the progression of cardiac hypertrophy and myocardial damage.


Asunto(s)
Apoptosis , Cardiomegalia , Cardiotónicos , Modelos Animales de Enfermedad , Hipertiroidismo , Mitofagia , Tiroxina , Vitamina D , Animales , Hipertiroidismo/complicaciones , Hipertiroidismo/metabolismo , Hipertiroidismo/tratamiento farmacológico , Mitofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratas , Tiroxina/farmacología , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Vitamina D/farmacología , Masculino , Cardiotónicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Miocardio/metabolismo , Miocardio/patología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Malondialdehído/metabolismo , Hormonas Tiroideas/metabolismo
10.
Med J Malaysia ; 79(Suppl 4): 31-37, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39215412

RESUMEN

INTRODUCTION: Ischaemic stroke induces oxidative stress with SOD2 downregulation, and BAX upregulation producing apoptosis. Vitamin D is a fat-soluble hormone that has a neuroprotective effect. The aim of this study is to elucidate the role of vitamin D in memory function, oxidative stress and apoptosis in transient global brain schaemic injury (TGBII) model. MATERIALS AND METHODS: TGBII was performed in male Wistar rats (3 to 5 months, 150 to 300 g) which underwent bilateral common carotid artery occlusion (BCCAO) for 20 minutes, then reperfused for 10 days (BCCAO group, n = 6). Two groups of BCCAO were treated with intraperitoneal injection of calcitriol 0.125 µg/kgBW (VD1 group) and 0.5 µg/kgBW (VD2 group). The spatial memory function was tested using a probe test with Morris water maze (MWM). mRNA expression of BAX and SOD2 were assessed by the RT-PCR method. Meanwhile, immunohistochemical staining was used for identification of SOD2 protein. Statistical analysis is tested using one-way ANOVA followed by post-hoc LSD. RESULTS: MWM showed a shorter duration in target quadrant of BCCAO group than the SO group, which is associated with BAX upregulation and SOD2 downregulation. The VDtreated groups had longer duration probe test compared to BCCAO. Furthermore, VD-treated groups had a longer duration in probe test with lower mRNA expression of BAX and higher expression of SOD2. However, there was no significant difference in VD1 and VD2. Immunostaining showed a reduced SOD2 signal in pyramidal cell of CA1 area in BCCAO group and ameliorated in VD1 and VD2 groups. CONCLUSION: Vitamin D ameliorates memory function and attenuates oxidative stress and apoptosis in the TGBII model.


Asunto(s)
Regulación hacia Abajo , Superóxido Dismutasa , Proteína X Asociada a bcl-2 , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Memoria/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vitamina D/farmacología
11.
Sci Rep ; 14(1): 20092, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209980

RESUMEN

This study evaluated the therapeutic efficacy and underlying mechanisms of crisaborole combined with vitamin D in the treatment of allergic contact dermatitis. While crisaborole, a phosphodiesterase 4 inhibitor, and vitamin D analogs are commonly used in the treatment of atopic dermatitis, their combined therapeutic potential in allergic contact dermatitis (ACD) remains unexplored. Given their anti-inflammatory properties, we hypothesized that the combination of crisaborole and vitamin D could offer superior efficacy in mitigating the symptoms and underlying mechanisms of allergic contact dermatitis. In vitro, HaCaT cells stimulated with tumor necrosis factor-α and interferon-γ were treated with a combination of crisaborole and vitamin D, followed by cytokine expression analysis. In vivo, male C57BL/6 mice were divided into five groups and treated accordingly: blank control, dinitrochlorobenzene-induced model, crisaborole alone, vitamin D alone, and a combination of crisaborole and vitamin D. On day 14, dorsal skin and ear thickness were measured, followed by comprehensive pathological evaluations. In vivo and in vitro experiments showed that the expression levels of inflammatory factors were significantly lower in the DNCB + VD + Cri group than in the DNCB group. Histological analyses revealed that, compared with the DNCB group, the combined treatment group significantly reduced epidermal hyperkeratosis, improved epidermal transdermal water loss, decreased dermatitis scores, and diminished mast cell infiltration. Moreover, it lowered the expression levels of IL-6, IL-4, TNF-α, iNOS, IL-17, CC chemokine ligand 2 (CCL2), and CC chemokine receptor 2 (CCR2). CCL2 recognizes CCR2 and stimulates inflammatory cells, enhancing the inflammatory response. Increased CCL2 expression correlates with heightened inflammation and dendritic cell infiltration in ACD, while downregulation of CCL2 attenuates inflammation. Thus, the combined use of crisaborole and vitamin D demonstrates superior therapeutic efficacy over monotherapy in a mouse model of ACD. The combination of vitamin D and crisaborole significantly reduces inflammation and epidermal hyperkeratosis in a mouse model of allergic contact dermatitis, demonstrating superior therapeutic efficacy compared to either treatment alone. This suggests that the combined therapy could be a promising approach for the prevention and treatment of allergic contact dermatitis.


Asunto(s)
Compuestos de Boro , Compuestos Bicíclicos Heterocíclicos con Puentes , Dermatitis Alérgica por Contacto , Ratones Endogámicos C57BL , Vitamina D , Animales , Dermatitis Alérgica por Contacto/tratamiento farmacológico , Dermatitis Alérgica por Contacto/patología , Vitamina D/farmacología , Vitamina D/administración & dosificación , Ratones , Compuestos de Boro/farmacología , Compuestos de Boro/uso terapéutico , Compuestos de Boro/administración & dosificación , Masculino , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Humanos , Quimioterapia Combinada , Citocinas/metabolismo , Modelos Animales de Enfermedad , Dinitroclorobenceno , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo
12.
Med J Malaysia ; 79(Suppl 4): 51-57, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39215415

RESUMEN

INTRODUCTION: Ischaemic stroke induces oxidative stress, mitochondrial damage, inflammation and senescence and the decrease of cognitive function. Vitamin D is a fat-soluble vitamin that has a neuroprotective effect to repair the function of the nervous system. The aim of this study is to investigate the effect of vitamin D on memory function, p16, p21 (senescence), and nerve growth factor (NGF) mRNA expression on the hippocampus after transient global cerebral ischemic. MATERIALS AND METHODS: The study was designed as quasiexperimental with a control group that only received posttests. We performed in vivo study with an induction bilateral common carotid artery occlusion (BCCAO) model and vitamin D injection for 10 days. A total of 24 rats were divided into four groups (n = 6): Sham operation (SO [control]), BCCAO (transient global cerebral ischemic model not given vitamin D), VD1 (BCCAO + vitamin D 0.125 µg/kgBW), and VD2 (BCCAO + vitamin D 0.5 µg/kgBW). The spatial memory function was tested with the Morris water maze. We performed immunohistochemistry to localise p16 expression. p16, p21 and NGF mRNA expression were assessed by reverse transcriptase (RT-PCR) method. RESULTS: The vitamin D treatment group required shorter mileage to find the platform and probe test. The total time spent was longer in the target quadrant than in non-target. The Vitamin D-treated group had lower p16 and p21 mRNA expression and higher NGF mRNA expression than the BCCAO group. Immunostaining showed p16 signal in the pyramidal cell of CA1 area in the BCCAO group. CONCLUSION: Vitamin D repairs memory function, senescence expression was lower and NGF was higher in the BCCAO model.


Asunto(s)
Modelos Animales de Enfermedad , ARN Mensajero , Vitamina D , Animales , Ratas , Masculino , Vitamina D/farmacología , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Memoria/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas Sprague-Dawley , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/metabolismo
13.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201632

RESUMEN

Idiopathic pulmonary fibrosis remains a relevant problem of the healthcare system with an unfavorable prognosis for patients due to progressive fibrous remodeling of the pulmonary parenchyma. Starting with the damage of the epithelial lining of alveoli, pulmonary fibrosis is implemented through a cascade of complex mechanisms, the crucial of which is the TGF-ß/SMAD-mediated pathway, involving various cell populations. Considering that a number of the available drugs (pirfenidone and nintedanib) have only limited effectiveness in slowing the progression of fibrosis, the search and justification of new approaches aimed at regulating the immune response, cellular aging processes, programmed cell death, and transdifferentiation of cell populations remains relevant. This literature review presents the key modern concepts concerning molecular genetics and cellular mechanisms of lung fibrosis development, based mainly on in vitro and in vivo studies in experimental models of bleomycin-induced pulmonary fibrosis, as well as the latest data on metabolic features, potential targets, and effects of vitamin D and its metabolites.


Asunto(s)
Vitamina D , Humanos , Vitamina D/metabolismo , Vitamina D/farmacología , Animales , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Transducción de Señal , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética
14.
J Dent Res ; 103(9): 908-915, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39104028

RESUMEN

There is a strong association between vitamin D levels and periodontal disease based on numerous epidemiological studies. We have previously shown that experimental deficiency of serum vitamin D in mice leads to gingival inflammation and alveolar bone loss. Treatment of cultured oral epithelial cells with the active form of vitamin D, 1,25(OH)2 vitamin D3 (1,25(OH)2D3), inhibits the extracellular growth and intracellular invasion of bacteria associated with periodontal disease. Maintenance of periodontal health may be due in part to the anti-inflammatory activities of vitamin D. Furthermore, this hormone can induce the expression of an antimicrobial peptide in cultured oral epithelial cells. We have shown that oral epithelial cells are capable of converting inactive vitamin D to the active form, suggesting that topical treatment of the oral epithelium with inactive vitamin D could prevent the development of periodontitis. We subjected mice to ligature-induced periodontitis (LIP), followed by daily treatment with inactive vitamin D or 1,25(OH)2D3. Treatment with both forms led to a reduction in ligature-induced bone loss and inflammation. Gingival tissues obtained from vitamin D-treated LIP showed production of specialized proresolving mediators (SPM) of inflammation. To examine the mechanism, we demonstrated that apical treatment of 3-dimensional cultures of primary gingival epithelial cells with vitamin D prevented lipopolysaccharide-induced secretion of proinflammatory cytokines and led to a similar production of SPM. Analysis of the oral microbiome of the mice treated with vitamin D showed significant changes in resident bacteria, which reflects a shift toward health-associated species. Together, our results show that topical treatment of oral tissues with inactive vitamin D can lead to the maintenance of periodontal health through the regulation of a healthy microbiome and the stimulation of resolution of inflammation. This strongly supports the development of a safe and effective vitamin D-based topical treatment or preventive agent for periodontal inflammation and disease.


Asunto(s)
Administración Tópica , Pérdida de Hueso Alveolar , Modelos Animales de Enfermedad , Periodontitis , Vitamina D , Animales , Ratones , Pérdida de Hueso Alveolar/prevención & control , Vitamina D/farmacología , Vitamina D/administración & dosificación , Vitamina D/uso terapéutico , Periodontitis/prevención & control , Encía/efectos de los fármacos , Calcitriol/farmacología , Calcitriol/administración & dosificación , Calcitriol/uso terapéutico , Ratones Endogámicos C57BL , Gingivitis/prevención & control
15.
Steroids ; 211: 109488, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151767

RESUMEN

Several studies have indicated that 1α,25-hydroxyvitamin D [1α,25(OH)2D3] inhibits the proliferation and metastasis of cancer cells through suppressing epithelial-mesenchymal transition. However, its influence on the translocation of ß-catenin remains unclear. In the present study, ovarian cancer stem-like cells (CSCs), including side population (SP) and CD44+/CD117+, were isolated from mouse ovarian surface epithelial (MOSE) cells with malignant transformation. The findings revealed that 1α,25(OH)2D3 obviously reduced the sphere-forming ability, as well as Notch1 and Klf levels. Moreover, the limiting dilution assay demonstrated that 1α,25(OH)2D3 effectively hindered the tumorigenesis of ovarian CSCs in vitro. Notably, treatment with 1α,25(OH)2D3 led to a substantial increase in the cell population of CD44+/CD117+ forming one tumor from ≤ 100 to 445 in orthotopic transplanted model, indicating a pronounced suppression of stemness of ovarian CSCs. Additionally, 1α,25(OH)2D3 robustly promoted the translocation of ß-catenin from the nuclear to the cytoplasm through directly binding to VDR, which resulted in decreased levels of c-Myc and CyclinD1 within late MOSE cells. Taken together, these results strongly supported the role of 1α,25(OH)2D3 in inhibiting stem-like properties in ovarian cancer cells by restraining nuclear translocation of ß-catenin, thereby offering a promising target for cancer therapeutics.


Asunto(s)
Núcleo Celular , Células Madre Neoplásicas , Neoplasias Ováricas , Receptores de Calcitriol , Vitamina D , beta Catenina , Femenino , beta Catenina/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Receptores de Calcitriol/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Ratones , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Humanos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
16.
Expert Opin Ther Targets ; 28(8): 669-687, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136530

RESUMEN

INTRODUCTION: Uterine fibroids, the most common nonmalignant tumors affecting the female genital tract, are a significant medical challenge. This article focuses on the most recent studies that attempted to identify novel non-hormonal therapeutic targets and strategies in UF therapy. AREAS COVERED: This review covers the analysis of the pharmacological and biological mechanisms of the action of natural substances and the role of the microbiome in reference to UFs. This study aimed to determine the potential role of these compounds in UF prevention and therapy. EXPERT OPINION: While there are numerous approaches for treating UFs, available drug therapies for disease control have not been optimized yet. This review highlights the biological potential of vitamin D, EGCG and other natural compounds, as well as the microbiome, as promising alternatives in UF management and prevention. Although these substances have been quite well analyzed in this area, we still recommend conducting further studies, particularly randomized ones, in the field of therapy with these compounds or probiotics. Alternatively, as the quality of data continues to improve, we propose the consideration of their integration into clinical practice, in alignment with the patient's preferences and consent.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Humanos , Leiomioma/tratamiento farmacológico , Femenino , Animales , Neoplasias Uterinas/tratamiento farmacológico , Terapia Molecular Dirigida , Microbiota/efectos de los fármacos , Probióticos/farmacología , Probióticos/administración & dosificación , Desarrollo de Medicamentos , Catequina/farmacología , Catequina/análogos & derivados , Catequina/administración & dosificación , Vitamina D/farmacología
17.
Mem Inst Oswaldo Cruz ; 119: e230178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166620

RESUMEN

BACKGROUND: The impact of nutrient availability on the survival of Mycobacterium leprae and the development of leprosy remains largely unknown. Iron is essential for the survival and replication of pathogens, while vitamin D has been involved with pathogen elimination and immunoregulation. OBJECTIVES: We evaluated the influence of dietary iron and vitamin D supplementation and restriction on the inflammatory response of mouse immune cells in vitro. METHODS: After 30 days of standard or modified diets, peritoneal cells and splenocytes were stimulated with the alive microorganisms and sonicated antigens of M. leprae, respectively. The production of inflammatory cytokines, reactive oxygen species, and cell proliferation were evaluated. FINDINGS: In peritoneal cells, vitamin D supplementation and iron restriction reduced the production of IL-6 and TNF in response to M. leprae, while splenocytes presented a reduction in TNF production under the same conditions. Lower levels of IFN-γ and TNF were observed in both iron-supplemented and iron-deficient splenocytes. Besides, iron supplementation also reduced the production of IL-6 and IL-10. No changes in the production of reactive oxygen species or in cell proliferation were observed related to different diets. MAIN CONCLUSIONS: Taken together, these data point to an interference of the status of these nutrients on the interaction between the host and M. leprae, with the potential to interfere with the progression of leprosy. Our results highlight the impact of nutritional aspects on this neglected disease, which is significantly associated with unfavourable social conditions.


Asunto(s)
Citocinas , Mycobacterium leprae , Especies Reactivas de Oxígeno , Bazo , Vitamina D , Animales , Mycobacterium leprae/inmunología , Mycobacterium leprae/efectos de los fármacos , Vitamina D/farmacología , Vitamina D/administración & dosificación , Bazo/inmunología , Ratones , Citocinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Femenino , Lepra/inmunología , Masculino , Ratones Endogámicos BALB C
18.
Respir Res ; 25(1): 321, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174953

RESUMEN

BACKGROUND: Mitochondria is prone to oxidative damage by endogenous and exogenous sources of free radicals, including particulate matter (PM). Given the role of mitochondria in inflammatory disorders, such as asthma and chronic obstructive pulmonary disease, we hypothesized that supplementation of vitamin D may play a protective role in PM-induced mitochondrial oxidative damages of human bronchial epithelial BEAS-2B cells. METHODS: BEAS-2B cells were pretreated with 1,25(OH)2D3, an active form of vitamin D, for 1 h prior to 24-hour exposure to PM (SRM-1648a). Oxidative stress was measured by flow cytometry. Mitochondrial functions including mitochondrial membrane potential, ATP levels, and mitochondrial DNA copy number were analyzed. Additionally, mitochondrial ultrastructure was examined using transmission electron microscopy. Intracellular and mitochondrial calcium concentration changes were assessed using flow cytometry based on the expression of Fluo-4 AM and Rhod-2 AM, respectively. Pro-inflammatory cytokines, including IL-6 and MCP-1, were quantified using ELISA. The expression levels of antioxidants, including SOD1, SOD2, CAT, GSH, and NADPH, were determined. RESULTS: Our findings first showed that 24-hour exposure to PM led to the overproduction of reactive oxygen species (ROS) derived from mitochondria. PM-induced mitochondrial oxidation resulted in intracellular calcium accumulation, particularly within mitochondria, and alterations in mitochondrial morphology and functions. These changes included loss of mitochondrial membrane integrity, disarrayed cristae, mitochondrial membrane depolarization, reduced ATP production, and increased mitochondrial DNA copy number. Consequently, PM-induced mitochondrial damage triggered the release of certain inflammatory cytokines, such as IL-6 and MCP-1. Similar to the actions of mitochondrial ROS inhibitor MitoTEMPO, 1,25(OH)2D3 conferred protective effects on mtDNA alterations, mitochondrial damages, calcium dyshomeostasis, thereby decreasing the release of certain inflammatory cytokines. We found that greater cellular level of 1,25(OH)2D3 upregulated the expression of enzymatic (SOD1, SOD2, and CAT) and non-enzymatic (GSH and NADPH) antioxidants to modulate cellular redox homeostasis. CONCLUSION: Our study provides new evidence that 1,25(OH)2D3 acts as an antioxidant, enhancing BEAS-2B antioxidant responses to regulate mitochondrial ROS homeostasis and mitochondrial function, thereby enhancing epithelial defense against air pollution exposure.


Asunto(s)
Bronquios , Calcio , Células Epiteliales , Homeostasis , Mitocondrias , Material Particulado , Humanos , Material Particulado/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Calcio/metabolismo , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/ultraestructura , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Vitamina D/farmacología , Especies Reactivas de Oxígeno/metabolismo
19.
Stem Cell Res Ther ; 15(1): 252, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135105

RESUMEN

BACKGROUND: Obesity is characterized by excessive fat accumulation, which is related with abnormal pluripotency of mesenchymal stem cells (MSCs). Recently, there is growing evidence that the disorder of maternal vitamin D (VD) intake is a well-known risk factor for long-term adverse health outcomes to their offspring. Otherwise, less is known of its repercussion and underlying mechanisms on the different differentiation potential of MSCs. METHODS: Four-week-old female C57BL/6J mice were fed with different VD reproductive diets throughout the whole pregnancy and lactation. The characteristics of BMSCs from their seven-day male offspring, VDR knockdown establishment of HuMSCs and HuMSCs under the different VD interventions in vitro were confirmed by flow cytometry, RT-PCR, and immunofluorescence. The roles of VD on their mitochondrial dysfunction and differentiation potential were also investigated. Then their remaining weaned male pups were induced by administrating high-fat-diet (HFD) for 16 weeks and normal fat diet was simultaneously as controls. Their lipid accumulation and adipocytes hypertrophy were determined by histological staining and related gene expressions. RESULTS: Herein, it was proved that imbalance of early-life VD intake could significantly aggravate the occurrence of obesity by inducing the adipogenesis through affecting the VD metabolism and related metabolites (P < 0.05). Moreover, abnormally maternal VD intake might be involved on the disorders of differentiation potential to inhibit the maintenance of MSCs stemness through increasing the productions of ROS, which was accompanied by impairing the expression of related genes on the adipo-osteogenic differentiation (P < 0.05). Moreover, it was along with increasing potential of adipogenic differentiation of MSCs as higher ROS in the state of VD deficiency, while excessive maternal VD status could conversely enhance the osteogenic differentiation with slightly lower ROS (P < 0.05). Furthermore, the underlying mechanisms might be involved on the mitochondria dysfunctional, especially the mitophagy, by activating the LC3b, P62 and etc. using in vivo and in vitro studies (P < 0.05). CONCLUSION: These findings demonstrated that imbalance of early-life VD intake could target ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs, which was significantly associated with the later obesity. Obviously, our results could open up an attractive modality for the benefits of suitable VD intake during the pregnancy and lactation.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Mitocondrias , Obesidad , Especies Reactivas de Oxígeno , Vitamina D , Animales , Células Madre Mesenquimatosas/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/patología , Diferenciación Celular/efectos de los fármacos , Femenino , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo , Masculino , Embarazo , Dieta Alta en Grasa/efectos adversos , Adipogénesis/efectos de los fármacos
20.
Genes (Basel) ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062692

RESUMEN

Several single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) have been observed in association with susceptibility to various pathologies, including autism, major depression, age-related changes in cognitive functioning, and Parkinson's and Alzheimer's diseases. This study aimed to establish the association between Fok1/Apa1 polymorphic variants and anxious/depressive symptoms in nonclinical adolescents from central Italy, with the goal of identifying the risk of developing both symptoms. We found no significant difference in genotype distribution or dominant/recessive models of Fok1/Apa1 VDR polymorphic variants between subjects with anxious/depressive symptoms and controls. HN9.10e cell lines carrying the AA genotype for Fok1 and the CC genotype for Apa1 responded better to treatment with vitamin D3 than cell lines carrying the AG genotype for Fok1 and CA genotype for Apa1. Cell lines carrying the GG genotype for Fok1 and the AA genotype for Apa1 did not respond at all, suggesting avenues for future studies in both the general population and individuals with mental and/or neuropsychiatric disorders. These studies suggest that the level of response to vitamin D3 administered to prevent and/or treat mental or neurological disorders could depend on the polymorphic variants of the vitamin D receptor.


Asunto(s)
Hipocampo , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/genética , Adolescente , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Línea Celular , Vitamina D/farmacología , Vitamina D/administración & dosificación , Salud Mental , Suplementos Dietéticos , Genotipo , Depresión/genética , Depresión/tratamiento farmacológico , Colecalciferol/farmacología , Colecalciferol/administración & dosificación , Italia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA