RESUMEN
Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.
Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Glucofosfatos/metabolismo , Glucógeno Sintasa/metabolismo , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/aislamiento & purificación , Glucógeno Sintasa/genética , Glucógeno Sintasa/aislamiento & purificación , Cinética , Polisacáridos/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/aislamiento & purificaciónRESUMEN
The genes encoding for UDPglucose pyrophosphorylase in two Xanthomonas spp. were cloned and overexpressed in Escherichia coli. After purification to electrophoretic homogeneity, the recombinant proteins were characterized, and both exhibited similar structural and kinetic properties. They were identified as dimeric proteins of molecular mass 60kDa, exhibiting relatively high specific activity ( approximately 80Units/mg) for UDPglucose synthesis. Both enzymes utilized UTP or TTP as substrate with similar affinity. The purified Xanthomonas enzyme was inactivated after dilution into the assay medium. Studies of crosslinking with the bifunctional lysyl reagent bisuberate suggest that inactivation occurs by enzyme dissociation to monomers. UTP effectively protects the enzyme against inactivation, from which a dissociation constant of 15microM was calculated for the interaction substrate-enzyme. The UTP binding to the enzyme would induce conformational changes in the protein, favoring the subunits interaction to form an active dimer. This view was reinforced by protein modeling of the Xanthomonas enzyme on the basis of the prokaryotic UDPglucose pyrophosphorylase crystallographic structure. The in silico approach pointed out two main critical regions in the enzyme involved in subunit-subunit interaction: the region surrounding the catalytic-substrate binding site and the C-term.