Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.023
Filtrar
1.
Biomed Khim ; 70(4): 231-239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39239897

RESUMEN

Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain. In this study, we have investigated the delayed neuroprotective effect of isatin (5 days after completion of the course of rotenone administration) on behavioral reactions and the relative content of isatin-binding proteins in the brain of rats with rotenone-induced experimental parkinsonism. Although during this period the rats retained locomotor dysfunction, the proteomic analysis data (profile of isatin-binding proteins in the brain and changes in their relative content) differed from the results obtained immediately after completion of the course of rotenone administration. Moreover, all isatin-binding proteins with altered relative content changed during this period are associated to varying degrees with neurodegeneration (many with Parkinson's and Alzheimer's diseases).


Asunto(s)
Encéfalo , Isatina , Fármacos Neuroprotectores , Rotenona , Animales , Isatina/farmacología , Rotenona/toxicidad , Fármacos Neuroprotectores/farmacología , Ratas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Ratas Wistar , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico
2.
J Neuroinflammation ; 21(1): 216, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218899

RESUMEN

Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Factores de Transcripción STAT , Transducción de Señal , alfa-Sinucleína , Animales , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/inmunología , Humanos , Ratones Transgénicos , Ratones Endogámicos C57BL , Quinasas Janus/metabolismo , Quinasas Janus/antagonistas & inhibidores , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/inmunología , Pirimidinas/farmacología
3.
Brain Behav ; 14(9): e70001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245995

RESUMEN

BACKGROUND: Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS: The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS: As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION: LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Drosophila melanogaster , Ácidos Láuricos , Levodopa , Trastornos Parkinsonianos , Animales , Drosophila melanogaster/efectos de los fármacos , Ácidos Láuricos/farmacología , Ácidos Láuricos/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Levodopa/farmacología , Levodopa/administración & dosificación , Apoptosis/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales Modificados Genéticamente , Estrés Oxidativo/efectos de los fármacos , Longevidad/efectos de los fármacos , Masculino
4.
Neurosci Lett ; 839: 137936, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151573

RESUMEN

Synucleins, including α-synuclein (α-syn), ß-syn, and γ-syn, have been implicated in various synucleinopathies, notably Parkinson's disease (PD), which has generated increased interest in understanding their roles. Although α-syn and ß-syn have contrasting neuropathological consequences, the precise role of γ-syn remains unclear. This study validated non-motor symptoms, specifically anxiety-like behavior, along with the degradation of dopaminergic (DAergic) neurons in the nigrostriatal system and DAergic neurites in the prefrontal cortex and hippocampus of rats infused with striatal 6-hydroxydopamine (6-OHDA). Our study further investigated the alterations in γ-syn expression levels in the prefrontal cortices and hippocampi of these 6-OHDA-treated rats, aiming to establish foundational insights into the neuropathophysiology of DA depletion, a central feature of PD. Our findings revealed a significant increase in the expression of γ-syn mRNA and protein in these brain regions, in contrast to unaltered α- and ß-syn expression levels. This suggests a distinct role of γ-syn within the neurobiological milieu under conditions of DA deficiency. Overall, our data shed light on the neurobiological changes observed in the hemiparkinsonian rat model induced with 6-OHDA, underscoring the potential significance of γ-syn in PD pathology.


Asunto(s)
Dopamina , Hipocampo , Oxidopamina , Corteza Prefrontal , Regulación hacia Arriba , gamma-Sinucleína , Animales , Corteza Prefrontal/metabolismo , Oxidopamina/toxicidad , Masculino , Hipocampo/metabolismo , Dopamina/metabolismo , gamma-Sinucleína/metabolismo , gamma-Sinucleína/genética , Ratas , Ratas Sprague-Dawley , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética
5.
Cell Rep Med ; 5(8): 101684, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39128469

RESUMEN

Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.


Asunto(s)
Encéfalo , Homeostasis , Ácido Láctico , Piruvato Quinasa , Sirtuina 1 , Sirtuina 1/metabolismo , Sirtuina 1/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Ratones , Ácido Láctico/metabolismo , Humanos , Acetilación/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas/metabolismo , Naftoquinonas/farmacología
6.
Neurochem Res ; 49(10): 2940-2956, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39088165

RESUMEN

Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.


Asunto(s)
Benserazida , Levodopa , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Trastornos Parkinsonianos , Animales , Levodopa/farmacología , Benserazida/farmacología , Benserazida/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Masculino , Ratones , Combinación de Medicamentos , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Lactobacillales , Probióticos/uso terapéutico , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Streptococcus thermophilus/efectos de los fármacos
7.
Brain Res ; 1841: 149128, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053685

RESUMEN

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.


Asunto(s)
Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Dopamina , Norepinefrina , Oxidopamina , Núcleo Subtalámico , Transmisión Sináptica , Animales , Núcleo Subtalámico/metabolismo , Estimulación Encefálica Profunda/métodos , Masculino , Oxidopamina/toxicidad , Transmisión Sináptica/fisiología , Dopamina/metabolismo , Norepinefrina/metabolismo , Ratas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Neuronas Dopaminérgicas/metabolismo , Bulbo Olfatorio/metabolismo , Ratas Sprague-Dawley , Cuerpo Estriado/metabolismo , Giro Dentado/metabolismo , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/fisiopatología
8.
Neuropathol Appl Neurobiol ; 50(4): e13000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036836

RESUMEN

AIMS: Astrocytic tau pathology is a major feature of tauopathies and ageing-related tau astrogliopathy (ARTAG). The substantia nigra (SN) is one of the important degenerative areas in tauopathies with parkinsonism. Nigral tau pathology is usually reported as neuronal predominant with less prominent astrocytic involvement. We aimed to identify cases with prominent astrocytic tau pathology in the SN. METHODS: We use the term nigral tau-astrogliopathy (NITAG) to describe cases showing an unusually high density of ARTAG with less neuronal tau pathology in the SN. We collected clinical information and studied the distribution of tau pathology, morphological features and immunostaining profiles in three cases. RESULTS: Three cases, all males with parkinsonism, were identified with the following clinicopathological diagnoses: (i) atypical parkinsonism with tau pathology reminiscent to that in postencephalitic parkinsonism (69-year-old); (ii) multiple system atrophy (73-year-old); (iii) traumatic encephalopathy syndrome/chronic traumatic encephalopathy (84-year-old). Double-labelling immunofluorescence confirmed co-localization of GFAP and phosphorylated tau in affected astrocytes. Staining profiles of NITAG revealed immunopositivity for various phosphorylated tau antibodies. Some astrocytic tau lesions were also seen in other brainstem regions and cerebral grey matter. CONCLUSIONS: We propose NITAG is a rare neuropathological feature, and not a distinct disease entity, in the frame of multiple system ARTAG, represented by abundant tau-positive astrocytes in various brain regions but having the highest density in the SN. The concept of NITAG allows the stratification of cases with various background pathologies to understand its relevance and contribution to neuronal dysfunction.


Asunto(s)
Envejecimiento , Astrocitos , Sustancia Negra , Tauopatías , Proteínas tau , Humanos , Masculino , Sustancia Negra/patología , Sustancia Negra/metabolismo , Anciano , Astrocitos/patología , Astrocitos/metabolismo , Tauopatías/patología , Tauopatías/metabolismo , Anciano de 80 o más Años , Envejecimiento/patología , Proteínas tau/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo
9.
J Neurophysiol ; 132(3): 733-743, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39015077

RESUMEN

Growing evidence indicates that activation of cannabinoid type 2 (CB2) receptors protects dopamine neurons in the pathogenesis of Parkinson's disease (PD). However, the mechanisms underlying neuroprotection mediated by CB2 receptors are still elusive. In this study, we investigated the effects of CB2 receptor activation on 6-hydroxydopamine (6-OHDA)-induced dopamine neuron degeneration and iron accumulation in the substantia nigra (SN) of rats. We found that treatment with JWH133, a selective CB2 receptor agonist, significantly improved the apomorphine (APO)-induced rotational behavior in 6-OHDA-treated rats. The decreased numbers of tyrosine hydroxylase (TH)-positive neurons and reduced TH protein expression in the lesioned SN of rats were effectively restored by JWH133. Moreover, we found that JWH133 inhibited the increase of iron-staining cells in the lesioned SN of rats. To explore the protective mechanisms of activation of CB2 receptors on dopamine neurons, we further observed the effect of JWH133 on 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultured ventral mesencephalon (VM) neurons from rats. We found that JWH133 significantly inhibited the increase of intracellular reactive oxygen species (ROS), the activation of Caspase-3, the decrease of mitochondrial transmembrane potential (ΔΨm), and the decrease of Bcl-2/Bax protein expression caused by MPP+ treatment. JWH133 also inhibited the MPP+-induced upregulation of divalent metal transporter-1 (DMT1) and downregulation of ferroportin 1 (FPN1). Furthermore, JWH133 also suppressed the MPP+-accelerated iron influx in the VM neurons. These results suggest that activation of CB2 receptor suppresses MPP+-induced cellular iron accumulation and prevents neurodegeneration.NEW & NOTEWORTHY Expression of cannabinoid type 2 receptors (CB2Rs) was discovered on dopamine neurons in recent years. The role of CB2R expressed on dopamine neurons in the pathogenesis of Parkinson's disease (PD) has not been fully elucidated. The content of iron accumulation in the brain is closely related to the progress of PD. We verified the inhibitory effect of CB2R on iron deposition in dopamine neurons through experiments, which provided a new idea for the treatment of PD.


Asunto(s)
Cannabinoides , Neuronas Dopaminérgicas , Hierro , Oxidopamina , Ratas Sprague-Dawley , Receptor Cannabinoide CB2 , Animales , Masculino , Cannabinoides/farmacología , Ratas , Hierro/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/agonistas , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Tirosina 3-Monooxigenasa/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Agonistas de Receptores de Cannabinoides/farmacología
10.
Brain Behav ; 14(7): e3605, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956819

RESUMEN

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Trastornos Parkinsonianos , Probenecid , Estimulación Magnética Transcraneal , Animales , Estimulación Magnética Transcraneal/métodos , Ratones , Masculino , Probenecid/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Interleucina-1beta/metabolismo , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Intoxicación por MPTP/terapia , Intoxicación por MPTP/prevención & control , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/fisiopatología , Actividad Motora/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
11.
NPJ Biofilms Microbiomes ; 10(1): 61, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060267

RESUMEN

The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.


Asunto(s)
Heces , Microbioma Gastrointestinal , Macaca fascicularis , Animales , Heces/microbiología , Modelos Animales de Enfermedad , Disbiosis/microbiología , Masculino , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Trastornos Parkinsonianos/microbiología , Trastornos Parkinsonianos/metabolismo , Metabolómica/métodos , Metaboloma , Interacciones Microbiota-Huesped , Multiómica
12.
Neurotoxicology ; 103: 320-334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38960072

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.


Asunto(s)
Neuronas Dopaminérgicas , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Receptores de Glucocorticoides , Rotenona , alfa-Sinucleína , Animales , Rotenona/toxicidad , Fármacos Neuroprotectores/farmacología , Ratones , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Receptores de Glucocorticoides/metabolismo , alfa-Sinucleína/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Modelos Animales de Enfermedad , Fenantrenos
13.
Behav Brain Res ; 471: 115121, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38945302

RESUMEN

Controlled nigrostriatal dopamine release supports effective limb use during locomotion coordination that becomes compromised after this pathway deteriorates in Parkinson's Disease (PD). How dopamine release relates to active ongoing behavior control remains unknown. Restoring proper release strategy appears important to successful PD treatment with transplanted dopamine-producing stem cells. This is suggested by apparently distinct behavioral support from tonic or phasic release and corresponding requirements of requisite afferent control exhibited by intact nigrostriatal neurons. Our laboratory previously demonstrated that transplanted dopaminergic cells can elicit skilled movement recovery known to depend on phasic dopamine release. However, efforts to measure this movement-related dopamine release yielded seemingly paradoxical, incongruent results. In response, here we explored whether those previous observations derived from rapid reuptake transport into either transplanted cells or residual, lesion-surviving terminals. We confirmed this using minimal reuptake blockade during intrastriatal microdialysis. After unilateral dopamine depletion, rats received transplants and were subjected to our swimming protocol. Among dopamine-depleted and transplanted rats, treatment supported restoration of limb movement symmetry. Interestingly, subsequent reuptake-restricted microdialysis confirmed distinct swimming-induced dopamine increases clearly occurred among these lesioned/transplanted subjects. Thus, phasic firing control appears to contribute to transplant-derived recovery in Parkinsonian animals.


Asunto(s)
Modelos Animales de Enfermedad , Dopamina , Microdiálisis , Animales , Dopamina/metabolismo , Masculino , Ratas , Mesencéfalo/metabolismo , Oxidopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Extremidades , Sustancia Negra/metabolismo , Ratas Sprague-Dawley
14.
Behav Brain Res ; 471: 115092, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38844056

RESUMEN

Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.


Asunto(s)
Modelos Animales de Enfermedad , Animales , Humanos , Tecnología Química Verde , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estrés Oxidativo/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo , Antioxidantes/farmacología
15.
Biochem Pharmacol ; 226: 116343, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852645

RESUMEN

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Asunto(s)
Estrés del Retículo Endoplásmico , Ratas Sprague-Dawley , Rotenona , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Rotenona/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas , Masculino , Línea Celular Tumoral , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácidos Pentanoicos/farmacología , Ácidos Pentanoicos/uso terapéutico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Agregado de Proteínas/efectos de los fármacos
16.
Elife ; 122024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940422

RESUMEN

Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Núcleo Dorsal del Rafe , Oxidopamina , Trastornos Parkinsonianos , Neuronas Serotoninérgicas , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Serotoninérgicas/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Ratones , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Masculino , Ratones Endogámicos C57BL , Desipramina/farmacología , Norepinefrina/metabolismo
17.
Brain Res Bull ; 214: 110989, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825252

RESUMEN

Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.


Asunto(s)
Neuronas Dopaminérgicas , Molécula 1 de Adhesión Intercelular , Ratones Endogámicos C57BL , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Masculino , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/metabolismo , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Inflamación/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Microglía/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología
18.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852753

RESUMEN

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/farmacología , Oxidopamina/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas , Pirimidinas
19.
Parkinsonism Relat Disord ; 125: 107043, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896976

RESUMEN

INTRODUCTION: The substantia nigra pars compacta (SNc) is the key pathologic locus in neurodegenerative parkinsonian disorders. Recently, in vivo susceptibility MRI metrics were associated with postmortem glial cell density and tau burden in the SNc of parkinsonism subjects. This study investigated the red nucleus (RN), another iron-rich region adjacent to the SNc and a potential site of higher functionality in parkinsonisms. METHODS: In vivo MRI and postmortem data were obtained from 34 parkinsonism subjects and 3 controls. Neuron density, glial cell density, and percentages of area occupied by α-synuclein and tau were quantified using digitized midbrain slides. R2* and quantitative susceptibility mapping (QSM) metrics in the RN and SNc were derived from multi-gradient echo images. Histopathology data were compared between the RN and SNc using paired t-tests. MRI-histology associations were analyzed using partial Pearson correlations. RESULTS: The RN had greater neuron (t23 = 3.169, P = 0.004) and glial cell densities (t23 = 2.407, P = 0.025) than the SNc, whereas the SNc had greater α-synuclein (t28 = 4.614, P < 0.0001) and tau burden (t24 = 4.513, P = 0.0001). In both the RN (R2*: r = 0.47, P = 0.043; QSM: r = 0.52, P = 0.024) and SNc (R2*: r = 0.57, P = 0.01; QSM: r = 0.58, P = 0.009), MRI values were associated with glial cell density but not neuron density or α-synuclein (Ps > 0.092). QSM associated with tau burden (r = 0.49, P = 0.038) in the SNc, but not the RN. CONCLUSIONS: The RN is resilient to parkinsonian-related pathological processes compared to the SNc, and susceptibility MRI captured glial cell density in both regions. These findings help to further our understanding of the underlying pathophysiological processes in parkinsonisms.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Parkinsonianos , Porción Compacta de la Sustancia Negra , Núcleo Rojo , Sustancia Negra , Humanos , Núcleo Rojo/diagnóstico por imagen , Núcleo Rojo/patología , Núcleo Rojo/metabolismo , Masculino , Anciano , Femenino , Porción Compacta de la Sustancia Negra/diagnóstico por imagen , Porción Compacta de la Sustancia Negra/patología , Porción Compacta de la Sustancia Negra/metabolismo , Anciano de 80 o más Años , Persona de Mediana Edad , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/patología , Sustancia Negra/metabolismo , Proteínas tau/metabolismo , Neuroglía/patología , Neuroglía/metabolismo , alfa-Sinucleína/metabolismo , Neuronas/patología , Neuronas/metabolismo
20.
Neuropharmacology ; 257: 110033, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866066

RESUMEN

The anteroventral bed nucleus of stria terminalis (avBNST) is a limbic forebrain region involved in the regulation of anxiety, and expresses GABAB receptors, which are located at both pre- and post-synaptic sites. However, it is unclear how blockade of these receptors affects anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and increased GABA release and decreased glutamate release in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). Intra-avBNST injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both sham and 6-OHDA rats. Intra-avBNST injection of CGP36216 inhibited the GABAergic neurons and increased GABA/glutamate ratio in the avBNST and increased levels of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 produced opposite effects on the firing activity of avBNST GABAergic neurons and levels of the neurotransmitters in the avBNST and BLA. Moreover, the doses of the antagonists producing significant behavioral effects in 6-OHDA rats were lower than those in sham rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in 6-OHDA rats. Altogether, these findings suggest that pre- and post-synaptic GABAB receptors in the avBNST are implicated in PD-related anxiety-like behaviors, and degeneration of the nigrostriatal pathway enhances functions and/or upregulates expression of these receptors.


Asunto(s)
Ansiolíticos , Ansiedad , Antagonistas de Receptores de GABA-B , Oxidopamina , Trastornos Parkinsonianos , Receptores de GABA-B , Núcleos Septales , Animales , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo , Masculino , Ansiedad/metabolismo , Antagonistas de Receptores de GABA-B/farmacología , Ansiolíticos/farmacología , Ratas , Receptores de GABA-B/metabolismo , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/psicología , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ratas Sprague-Dawley , Serotonina/metabolismo , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Compuestos Organofosforados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA