Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Mol Res ; 14(1): 2450-60, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25867391

RESUMEN

The aim of the present study was to investigate the anti-ovarian cancer effect of the inhibitor of signal transducer and activator of transcription 3 (STAT3), WP1066. Western blot was used to detect the phosphorylation of STAT3 in ovarian cancer cell line SKOV3 and cisplatin-resistant ovarian cancer cell line SKOV3/DDP. MTT and colony-forming assays were performed to evaluate the viability and growth of ovarian cancer cells. The apoptosis of ovarian cancer cells was determined by flow cytometry. The wound healing assay and Transwell assay were performed to examine the migration and invasion of ovarian cancer cells. WP1066 significantly inhibited the phosphorylation of STAT3 in SKOV3 and SKOV3/DDP cells. WP1066 treatment inhibited the proliferation and clonogenicity of both SKOV3 and SKOV3/DDP cells. After WP1066 treatment for 24 h, the apoptosis rates of SKOV3 and SKOV3/DDP cells were significantly increased compared with the control cells. After treatment with WP1066, the reduction of the wound gaps was significantly less in both SKOV3 and SKOV3/DDP cells. WP1066 also significantly inhibited the invasion capacity of SKOV3 and SKOV3/DDP cells compared with the control group. Treatment with WP1066 combined with cisplatin significantly increased proliferation inhibition and apoptosis in SKOV3 and SKOV3/ DDP cells compared with treatment with cisplatin alone. A synergistic action between WP1066 and cisplatin on the proliferation and apoptosis of ovarian cancer cells was determined. In conclusion, inhibition of STAT3 may suppress the proliferation, migration and invasion, induce apoptosis and enhance the chemosensitivity of ovarian cancer cells, indicating that STAT3 is a new therapeutic target of ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Piridinas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Tirfostinos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Invasividad Neoplásica , Fosforilación , Piridinas/uso terapéutico , Tirfostinos/uso terapéutico
2.
Neural Dev ; 7: 19, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22681863

RESUMEN

BACKGROUND: Understanding the cellular mechanisms regulating axon degeneration and regeneration is crucial for developing treatments for nerve injury and neurodegenerative disease. In neurons, axon degeneration is distinct from cell body death and often precedes or is associated with the onset of disease symptoms. In the peripheral nervous system of both vertebrates and invertebrates, after degeneration of detached fragments, axons can often regenerate to restore function. Many studies of axonal degeneration and regeneration have used in vitro approaches, but the influence of extrinsic cell types on these processes can only be fully addressed in live animals. Because of its simplicity and superficial location, the larval zebrafish posterior lateral line (pLL) nerve is an ideal model system for live studies of axon degeneration and regeneration. RESULTS: We used laser axotomy and time-lapse imaging of pLL axons to characterize the roles of leukocytes, Schwann cells and target sensory hair cells in axon degeneration and regeneration in vivo. Immune cells were essential for efficient removal of axonal debris after axotomy. Schwann cells were required for proper fasciculation and pathfinding of regenerating axons to their target cells. Intact target hair cells were not themselves required for regeneration, but chemical ablation of neuromasts caused axons to transiently deviate from their normal paths. CONCLUSIONS: Macrophages, Schwann cells, and target sensory organs are required for distinct aspects of pLL axon degeneration or regeneration in the zebrafish larva. Our work introduces a powerful vertebrate model for analyzing axonal degeneration and regeneration in the living animal and elucidating the role of extrinsic cell types in these processes.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Degeneración Nerviosa/fisiopatología , Regeneración Nerviosa/fisiología , Neuronas/citología , Nervios Periféricos/citología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Axotomía , Cobre/farmacología , Cobre/uso terapéutico , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Mutación/genética , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Nervios Periféricos/embriología , Proteínas Proto-Oncogénicas/genética , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Transactivadores/genética , Factores de Transcripción/genética , Tirfostinos/farmacología , Tirfostinos/uso terapéutico , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA